首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the problem of non-fragile sampled-data stabilization analysis for a class of linear systems with probabilistic time-varying delays via new double integral inequality approach. Based on the auxiliary function-based integral inequality (AFBII) and with the help of some mathematical approaches, a new double integral inequality (NDII) is developed. Then, to demonstrate the merits of the proposed inequality, an appropriate Lyapunov–Krasovskii functional (LKF) is constructed with some augmented delay-dependent terms. By employing integral inequalities, an enhanced stability criterion for the concerned system model is derived in terms of linear matrix inequalities (LMIs). Finally, three benchmark illustrative examples are given to validate the effectiveness and advantages of the proposed results.  相似文献   

2.
This paper is concerned with the problem of exponentially extended dissipative criteria for a class of delayed discrete-time neural networks (DNNs) subject to resilient observer-based controller design. For this objective, a memoryless full-order Luenberger state observer is designed, and further, its observer error system is calculated with resilient control. Initially, some new improved weighted summation inequalities are proposed by combining weighted summation inequality and an extended reciprocal convex matrix inequality. By constructing the suitable Lyapunov-Krasovskii functional (LKF) and utilizing the developed summation inequalities, the exponentially extended dissipative criterion is obtained for the considered delayed DNNs. The designed observer and resilient control gain matrices can be determined by solving a set of linear matrix inequalities (LMIs) subject to the prescribed exponential decay rate. Finally, two numerical examples are carried out to illustrate the feasibility and effectiveness of the established theoretical results obtained through the newly developed summation inequalities.  相似文献   

3.
This paper proposes Discrete Legendre Polynomial(DLP)-based inequality by solving the best weighted approximation of a given time series. The proposed inequality could significantly reduce the conservativeness in stability analysis of systems with constant or interval time-varying delays. Also former well-known integral inequities, such as discrete Jensen inequality, discrete Wirtinger-based inequality, are both included in the proposed DLP-based inequality as special cases with lower-order approximation. Stability criterion with less conservatism is then developed for both constant and time-varying delayed systems. Several numerical examples are given to demonstrate the effectiveness and benefit of the proposed method.  相似文献   

4.
This paper deals with the problem of model reference control for linear parameter varying (LPV) systems. The LPV systems under consideration depend on a set of parameters that are bounded and available online. The main contribution of this paper is to design an LPV model reference control scheme for LPV systems whose state-space matrices depend affinely on a set of time-varying parameters that are bounded and available online. The design problem is divided into two subproblems: the design of the coefficient matrices of the controller and the design of the gain of the state feedback controller for LPV systems. The singular value decomposition is used to obtain the coefficient matrices, while the linear matrix inequality methodology is used to obtain the parameter-dependent state feedback gain of the control scheme. A simple numerical example is used to illustrate the proposed design and a coupled-tank process example is used to demonstrate the usefulness and practicality of the proposed design. Simulation and experimental results indicate that the proposed scheme works well.  相似文献   

5.
A control system of an ODE and a diffusion PDE is discussed in this paper. The novelty lies in that the system is coupled. The method of PDE backstepping as well as some special skills is resorted in stabilizing the coupled PDE–ODE control system, which is transformed into an exponentially stable PDE–ODE cascade with an invertible integral transformation. And a state feedback boundary controller is designed. Moreover, an exponentially convergent observer for anti-collocated setup is proposed, and the output feedback boundary control problem is solved. For both the state and output feedback boundary controllers, exponential stability analyses in the sense of the corresponding norms for the resulting closed-loop systems are given through rigid proofs.  相似文献   

6.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

7.
Recently, a polynomials-based integral inequality was proposed by extending the Moon’s inequality into a generic formulation. By imposing certain structures on the slack matrices of this integral inequality, this paper proposes an orthogonal-polynomials-based integral inequality which has lower computational burden than the polynomials-based integral inequality while maintaining the same conservatism. Further, this paper provides notes on relations among recent general integral inequalities constructed with arbitrary degree polynomials. In these notes, it is shown that the proposed integral inequality is superior to the Bessel–Legendre (B–L) inequality and the polynomials-based integral inequality in terms of the conservatism and computational burden, respectively. Moreover, the effectiveness of the proposed method is demonstrated by an illustrative example of stability analysis for systems with additive time-varying delays.  相似文献   

8.
This paper studies the stability problem of linear time-varying delay system. Firstly, a double integral inequality based on the second-order derivative is proposed in this paper. Secondly, novel Lyapunov–Krasovskii functional consisting of integral terms based on the second-order derivative is constructed to enhance the feasible region of delay-dependent stability. Based on the two aspects, new delay-dependent stability criteria which guarantee the asymptotic stability of linear systems with time-varying delay are given in the form of linear matrix inequality (LMI). Finally, several numerical examples are given to show the advantages of the proposed methods.  相似文献   

9.
This paper investigates the stability analysis of sampled-data systems in the looped-functional framework. A modified free-weighting matrix inequality with quadratic-type is proposed to reduce conservatism of the integral term. Based on new looped-functional, improved conditions are derived in terms of linear matrix inequalities (LMIs) by utilizing the proposed integral inequality. Numerical examples show the superiority of the proposed condition through comparisons with the most recent results.  相似文献   

10.
In this paper, we discussed the robust finite-time stability of conic type nonlinear systems with time varying delays. Some novel conditions are derived to design a linear quadratic regulator (LQR) based sliding mode control (SMC) by proposing an integral switching surface. The sufficient conditions are derived for the considered nonlinear system using Lyapunov–Krasovskii stability theory and linear matrix inequality (LMI) approach. The proposed conditions can be solved using some standard numerical packages. Finally, a practical example is provided to validate the advantages and effectiveness of the proposed results.  相似文献   

11.
This paper considers local stabilization of a boundary control system coupled by nonlinear parabolic equations. Based on backstepping approach, a linear Volterra-type integral transformation maps the system into another homogeneous target system, and an explicit feedback control law is obtained. Local exponential stabilization of the closed loop is established. A system with three coupled nonlinear parabolic equations is simulated, which show that the obtained feedback control law is feasible.  相似文献   

12.
This paper presents a novel iterative learning feedback control method for linear parabolic distributed parameter systems with multiple collocated piecewise observation. Multiple actuators and sensors distributed at the same position of the spatial domain are utilized to perform collocated piecewise control and measurement operations. The advantage of the proposed method is that it combines the iterative learning algorithm and feedback technique. Not only can it use the iterative learning algorithm to track the desired output trajectory, but also the feedback control approach can be utilized to achieve real-time online update. By utilizing integration by parts, triangle inequality, mean value theorem for integrals and Gronwall lemma, two sufficient conditions based on the inequality constraints for the convergence analysis of the tracking error system are presented. Some simulation experiments are provided to prove the effectiveness of the proposed method.  相似文献   

13.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

14.
This paper considers a stability analysis problem for continuous-time Markovian jump linear systems under aperiodic samplings which are represented as Markovian jump linear systems with input delay. For the systems, this paper constructs a Lyapunov functional by utilizing a fragmented-delay state, which is defined between the last sampling instant and the present time, and a new state space model of the fragmented state. Based on the Lyapunov functional, a stability criterion is derived in terms of linear matrix inequalities by using reciprocally convex approach and integral inequality. Here, the reciprocally convex approach and integral inequality are associated not only with the current state, the delayed state, and the maximum-admissible delay state, but also with the fragmented-delay state. The simulation result shows the effectiveness of the proposed stability criterion.  相似文献   

15.
The design problem of collocated feedback controllers is addressed in this paper for a class of semi-linear distributed parameter systems described by parabolic partial differential equation (PDE), where a finite number of local actuators and sensors are intermittently distributed in space. A Lyapunov direct method for the exponential stability analysis of the resulting closed-loop system is first presented for the system, in which the first mean value theorem for integration and the Wirtinger's inequality are employed. The corresponding stabilization condition is then derived through the analysis result. Finally, the proposed design method is implemented on the feedback control of a fisher equation and its effectiveness is evaluated through simulation results.  相似文献   

16.
This paper is concerned with the problem of delay-dependent guaranteed cost control for uncertain two-dimensional (2-D) state delay systems described by the Fornasini and Marchesini (FM) second state-space model. Given a scalar α∈(0,1), a sufficient condition for the existence of delay-dependent guaranteed cost controllers is given in terms of a linear matrix inequality (LMI) based on a summation inequality for 2-D discrete systems. A convex optimization problem is proposed to design a state feedback controller stabilizing the 2-D state delay system as well as achieving the least guaranteed cost for the resulting closed-loop system. Finally, the simulation example of thermal processes is given to illustrate the effectiveness of the proposed result.  相似文献   

17.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

18.
This paper addresses the issue of resilient control in the presence of denial-of-service (DoS) attacks for a class of cyber-physical systems. The primary objective is to design a static output feedback controller and event-triggered condition simultaneously such that the globally exponential stability of the closed-loop system is ensured. Compared with stepwise techniques, the co-design achieves the trade-off between control performance and communication cost. The control co-design process is formulated as a bilinear matrix inequality (BMI) problem, which involves nonlinear terms. A successive convex optimization approach is proposed to solve the BMI problem. Further, we develop a self-triggered communication scheme to reduce the cost caused by continuous event detection. It is shown that the proposed event/self-triggered strategy is Zeno-free and excludes singular triggering. Finally, a numerical example is presented to demonstrate the validity of the proposed method.  相似文献   

19.
This paper investigates stability of linear systems with multiple/single time-delays. Firstly, a three-level cascade augmented Lyapunov-Krasovskii (L-K) functional is introduced, in which interconnect information among delayed state vectors is fully taken into account. Based on a newly integral inequality and the cascade L-K functional, a novel stability criterion is derived for linear systems with multiple time-delays. Secondly, it is found that the proposed L-K functional is also suitable for linear systems with single time-delay if the delay-partitioning method is employed. This motivates us to obtain a less conservative stability condition for linear systems with single time-delay. Finally, Numerical examples are given to confirm the advantages of the proposed method.  相似文献   

20.
This paper addresses the issue of reliable feedback control of an uncertain aircraft flight control systems with disturbances via non-fragile sampled-data control approach. In particular, the parameter uncertainties are assumed to be randomly occurring which is described by the Bernoulli distributed sequences. By constructing a suitable Lyapunov–Krasovskii functional together with Wirtinger-based inequality, a new set of sufficient conditions in terms of linear matrix inequalities is obtained to ensure the asymptotic stability and extended dissipativity of the aircraft flight control systems not only when all actuators are operational, but also in case of some actuator failures. Finally, simulation results are conducted to validate the effectiveness of the proposed control design technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号