首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the optimal control of a DC torque motor servo system which represents a class of continuous-time linear uncertain systems with unknown jumping internal dynamics. A data-driven adaptive optimal control strategy based on the integration of adaptive dynamic programming (ADP) and switching control is presented to minimize a predefined cost function. This takes the first step to develop switching ADP methods and extend the application of ADP to time-varying systems. Moreover, an analytical method to give the initial stabilizing controller for policy iteration ADP is proposed. It is shown that under the proposed adaptive optimal control law, the closed-loop switched system is asymptotically stable at the origin. The effectiveness of the strategy is validated via simulations on the DC motor system model.  相似文献   

2.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   

3.
This paper proposes a robust adaptive control strategy for a class of state-constrained uncertain nonlinear systems with prescribed transient and steady-state behavior. The prescribed tracking performance can be characterized by constraints on an output tracking error. Both state and output constraints are achieved by bounding integral barrier Lyapunov functions in the backstepping procedure. A robust adaptive term is designed to compress auxiliary system uncertainties without the knowledge of their bounds. The satisfaction of control constraints and tracking error convergence are verified by theoretical analysis and are illustrated by simulation results.  相似文献   

4.
This paper is concerned with the adaptive control problem for a class of linear discrete-time systems with unknown parameters based on the distributed model predictive control (MPC) method. Instead of using the system state, the state estimate is employed to model the distributed state estimation system. In this way, the system state does not have to be measurable. Furthermore, in order to improve the system performance, both the output error and its estimation are considered. Moreover, a novel Lyapunov functional, comprised of a series of distributed traces of estimation errors and their transposes, has been presented. Then, sufficient conditions are obtained to guarantee the exponential ultimate boundedness of the system as well as the asymptotic stability of the error system by solving a nonlinear programming (NP) problem subject to input constraints. Finally, the simulation examples is given to illustrate the effectiveness and the validity of the proposed technique.  相似文献   

5.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

6.
This paper is concerned with the tracking control problem for nonlinear heterogeneous multi-agent systems with a static leader, where the leader’s state is only available to a small portion of follower agents. The considered multi-agent system is composed of first- and second-order follower agents with unknown nonlinearities and unknown disturbances, and the communication graph of follower agents is fixed and directed. A robust adaptive neural network controller is designed for each follower agent. By applying the Lyapunov theory with the singular value analysis method, it is shown that all follower agents will synchronize to the leader agent with bounded residual errors. A numerical example is presented to demonstrate the effectiveness of the theoretical findings.  相似文献   

7.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

8.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, the data-driven adaptive dynamic programming (ADP) algorithm is proposed to deal with the optimal tracking problem for the general discrete-time (DT) systems with delays for the first time. The model-free ADP algorithm is presented by using only the system’s input, output and the reference trajectory of the finite steps of historical data. First, the augmented state equation is constructed based on the time-delay system and the reference system. Second, a novel data-driven state equation is derived by virtue of the history data composed of input, output and reference trajectory, which is considered as a state estimator.Then, a novel data-driven Bellman equation for the linear quadratic tracking (LQT) problem with delays is deduced. Finally, the data-driven ADP algorithm is designed to solve the LQT problem with delays and does not require any system dynamics. The simulation result demonstrates the validity of the proposed data-driven ADP algorithm in this paper for the LQT problem with delays.  相似文献   

11.
This paper addresses a novel fuzzy adaptive control method for a class of uncertain nonlinear multi-input multi-output (MIMO) systems with unknown dead-zone outputs and immeasurable states. The immeasurable states under consideration are estimated by designing a fuzzy state observer. Based on the properties of the Nussbaum-type function, the difficulty of fuzzy adaptive control caused by the unknown dead zone outputs of MIMO nonlinear uncertain systems is overcome. The presented design algorithm not only guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, but also ensures that the outputs of the MIMO system converge to a small neighborhood of the desired outputs. The main contributions of this research lie in that the developed MIMO systems are more general, and an efficient design method of output-feedback controller is investigated for the studied MIMO systems, which is more applicable in practical environment. Simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

12.
In this paper, an adaptive quantized control method with guaranteed transient performance is presented for a class of uncertain nonlinear systems. By introducing the Nussbaum function technique, the difficulty caused by quantization is handled and a novel adaptive control scheme is designed. In comparing with the existing adaptive control scheme, the key advantages of the proposed control scheme are that the controller needs no information about the parameters of the quantizer and the stability of the closed-loop system and the transient performance are independent of the coarseness of the quantizer. Based on Lyapunov stability theory and Barbalat’s Lemma, it is proven that all the signals in the resulting closed-loop system are bounded and the tracking error converges to zero asymptotically with the prescribed performance bound at all times. Simulation results are presented to verify the effectiveness of the proposed control method.  相似文献   

13.
This paper addresses the problem of global finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems under arbitrary switchings. By applying the delicate introduction of coordinate transformations and adding a power integrator technique, an adaptive controller is constructed to guarantee that the system state is regulated to the origin almost surely in a finite time while maintaining the boundedness of the resulting closed-loop systems in probability. Two examples are given to illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
A novel adaptive event-triggered control protocol is developed to investigate the tracking control problem of multi-agent systems with general linear dynamics. By introducing the event-triggered control strategy, each agent can decide when to transfer its state to its neighbors at its own triggering instants, which can greatly reduce communication burden of agents. It is shown that the “Zeno phenomenon” does not occur by verifying that there exists a positive lower bound on the inter-event time intervals of agents under the proposed adaptive event-triggered control algorithm. Finally, an example is provided to testify the effectiveness of the obtained theoretical results.  相似文献   

15.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

16.
This paper presents an improved adaptive design strategy for neural-network-based event-triggered tracking of uncertain strict-feedback nonlinear systems. An adaptive tracking scheme based on state variables transmitted from the sensor-to-controller channel is designed via only single neural network function approximator, regardless of unknown nonlinearities unmatched in the control input. Contrary to the existing multiple-function-approximators-based event-triggered backstepping control results with multiple triggering conditions dependent on all error surfaces, the proposed scheme only requires one triggering condition using a tracking error and thus can overcome the problem of the existing results that all virtual controllers with multiple function approximators should be computed in the sensor part. This leads to achieve the structural simplicity of the proposed event-triggered tracker in the presence of unmatched and unknown nonlinearities. Using the impulsive system approach and the error transformation technique, it is shown that all the signals of the closed-loop system are bounded and the tracking error is bounded within pre-designable time-varying bounds in the Lyapunov sense.  相似文献   

17.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

18.
This paper considers the distributed tracking control problem for linear multi-agent systems with disturbances and a leader whose control input is nonzero and not available to any follower. Based on the relative output measurements of neighboring agents, a novel distributed observer-based tracking protocol is proposed, where the distributed intermediate estimators are constructed to estimate the leader’s unknown control input and the states of the tracking error system simultaneously, then a distributed tracking protocol is designed based on the derived estimates. It is proved that the states of the tracking error system are uniformly ultimately bounded and an explicit tracking error bound is obtained. A simulation example of aircrafts verifies the effectiveness of the proposed method.  相似文献   

19.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

20.
In this paper, an integrated design of data-driven fault-tolerant tracking control is addressed relying on the Markov parameters sequence identification and adaptive dynamic programming techniques. For the unknown model systems, the sequence of Markov parameters together with the covariance of innovation signal is firstly estimated by least square method. After a transformation of value function from stochastic to deterministic, a policy iteration adaptive dynamic programming algorithm is then formulated to find the optimal tracking control law. In order to eliminate the influence of unpredicted faults, an active fault-tolerant supervisory control strategy is further constructed by synthesizing fault detection, isolation, estimation and compensation. All these involved designs are performed in the data-driven manner, and thus avoid the information requirement about system drift dynamics. From the perspective of system operation management, the above integrated control scheme provides a framework to achieve the tracking performance optimization, monitoring and maintaining simultaneously. The effectiveness of these conclusions is finally verified via two case studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号