首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

2.
通常我们求二元函数s=f(x,y)的最值,一般具有约束条件g(x,y)=0(或g(x,y)≤0),这类二元函数的最值称二元函数的条件最值。一般采用消元法,即从s=f(x,y)中消去一个变量,化为一元函数后,使用判别式法,不等式法,几何法等解之,但必须注意在约束条件下的x,y的取值范围对结果的影响。 1、函数法 例1已知x+2y=4,求x~2+y~2的最小值。 解:由x+2y=4,得x=4-2y,代入s= x~2+y~2中,得s=(4-2y)~2+y~2=5y~2-16y+16=5(y-8/5)~2+16/5。  相似文献   

3.
<正>已知Ax2+Bxy+Cy2+Dx+Ey+F=0(≤0),求目标函数z=f(x,y)的取值范围或最值,这类问题在近几年竞赛和高考题中频繁出现.本文通过实例从三角换元的角度探讨此类问题的解法.例1已知实数x、y满足2x2-2xy+y2=1,则x+2y的取值范围为.  相似文献   

4.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

5.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

6.
因式分解是初二代数中的重要内容之一 ,不论是在求代数式的值的计算还是代数式的证明中应用都十分广泛 ,现举例如下 :例 1 已知x2 - 2xy - 1 5y2 =0 ,求 xy 的值。分析 :本题利用二次三项式x2 +(p +q)x +pq =0型的因式分解 ,将x2 - 2xy - 1 5y2 =0通过因式分解化为二个二元一次方程 ,从而求出 xy 的值。解 :由已知x2 - 2xy - 1 5y2 =0得 :(x - 5y) (x +3y) =0只有当x - 5y =0或x +3y =0时 ,原式成立。∴x =5y或x =- 3y即 xy=5或 xy- 3例 2 已知 :x - 3z =5y ,求x2 - 2 5y2 +9z2 - 6xz的值。分析 :本题先从已知入手 ,通过移项得x - 3z - 5z…  相似文献   

7.
正在《中学生数学》杂志上《巧求取值范围一例》一文研究了"已知实数x、y满足x2-xy+y2=1,求x2-y2的取值范围"的解法,其解法如下:设x=m+n,y=m-n,则m2+3n2=1,∵m2+3n2≥23~(1/2)|mn|(当且仅当m2=3n2时取等号),  相似文献   

8.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

9.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

10.
题目已知4x+4y=2(x+1)+2(y+1),试求2x+2y的取值范围. 解法1:由已知得于是  相似文献   

11.
分类讨论思想是解题的一种重要思想方法,本文举例说明在中考选择题求解中的应用.例1一次函数y=kx+b,当-3≤x≤1时,对应的y值的取范围为1≤y≤9,则kb的值为().A.14B.-6C.-4或21D.-6或14解分k>0和k<0两种情况进行讨论.(1)k>0时,函数值y随x的值增大而增大,所以当x=-3时,=1;当x=1时,y=9.于是,-3k+b=1k+b= 9解之,k=2,b=7,故kb=14.(2)k<0时,函数值y随x的值增大而减小,所以当x=-3,y=9;当x=1时,y=1.于是-3k+b=9,k+b=1 .解之,k=-2,b=3,故b=-6.综上,kb=14或kb=-6.选D.例2已知方程x=ax+1有一个负根而且没有正根,那么的取值范围为().A.a>-1B.a=1C.a…  相似文献   

12.
题 已知a、b、c ,x、y、z是实数 ,a2 +b2 +c2 =1 ,x2 +y2 +z2 =9,求 ax +by +cz的最大值。1 错解解 由均值不等式可得ax≤ a2 +x22 ,by≤ b2 +y22 ,cz≤c2 +z22 ,各式相加得 :ax +by +cz≤ a2 +x2 +b2 +y2 +c2 +z22=a2 +b2 +c2 +x2 +y2 +z22=1 +92=5 ,即 ax +by +cz≤ 5 ( )故 ax +by +cz的最大值为 5。错因 在用均值不等式求最值时忽略了等号成立的条件 ,因为要使 ( )等号成立 ,当且仅当a =x ,b =y ,c=z ,这与已知条件矛盾。所以ax +by +cz <5 ,即ax +by +cz的最大值不可能为 5。2 通解分析 该题的问题是由于a2 +b2 +c2 ≠x2 +y…  相似文献   

13.
在解不等式问题时 ,调整系数、拆项、补项是常用技巧 .但调整系数、拆项、补项时 ,既要考虑不等式的结构 ,又要符合相关要求 ,难以直接确定 .此时若用待定系数法 ,就可兼顾几方面要求 ,只需求出待定系数就行了 .例 1 已知 :1≤ 3x+2 y≤ 3,2≤ x+3y≤5 ,求 5 x+8y的取值范围 .分析 用 3x+2 y及 x+3y将 5 x+8y表示出来是解题的关键 .设 5 x+8y=m(3x+2 y) +n(x+3y) =(3m+n) x+(2 m+3n) y(m,n为待定系数 ) .由 3m+n=5 ,2 m+3n=8,解得 m=1,n=2 .解  5 x+8y=(3x+2 y) +2 (x+3y) ,∵ 2≤x+3y≤ 5 ,∴ 4≤ 2 (x+3y)≤ 10 .又 1≤ 3x+2 y≤ 3,∴ …  相似文献   

14.
在创造性思维活动中,发散思维起着主导作用,是创造性思维的核心和基础。发散思维是指人们从不同角度,不同方向寻找解题途径的一种思维形式,它从一点出发,沿着多方向、多渠道达到思维目标,具有思维的流畅性、灵活性和独特性。因此,教师要重视对学生进行发散思维的培养,在教学过程中有目的地对学生进行发散思维的训练,提高学生发散思维的能力。根据笔者的教学实践,下面举例谈谈。一、一题多解例1:已知y=x2+px+q的图象与x轴只有一个公共点,且坐标为(-1,0),求P、q的值。分析:根据y=x2+px+q的图象与x轴只有一个公共点,可知公共点就是抛物线的顶…  相似文献   

15.
例1 已知x、y是实数,且满足 x2+xy+y2—2=0,求x2—xy+y2的取值范围. 解因为 x2+xy+y2=2①设x2—xy+y2=t ②①—②,得③①+③,得④由④知 t≤6,由变式,得解得 t≥2/3,所以例2 已知a、b、C满足a+b+c=0,abc=8,  相似文献   

16.
<正>一、问题的提出在不等式性质的应用中,常常会遇到如下类型的问题:引例 已知实数满足-3≤2y-x≤2,-4≤y-3x≤1.(1)求y+2x的取值范围;(2)求y-x的取值范围.解 (1)解法1 利用不等式的可加性由条件可得-2≤x-2y≤3,-8≤2y-6x≤2,利用同向不等式的可加性,两式相加易得-1≤x≤2.同理,将-1≤x≤2与-3≤2y-x≤2两式相加,易得-2≤y≤2.  相似文献   

17.
文[1]给出了一个线性规划问题,即下面的题目已知1≤x+y≤4/3,-1≤x-y≤-1/3,求2x-y的取值范围.题目有一个比较流行的错误解法如下:由1≤x+y≤4/3,-1≤x-y≤-1/3相加得0≤2x≤1,又由-1≤x-y≤-1/3得1/3≤-x+  相似文献   

18.
常见教参资料用如下例题说明充要条件的正确应用 ,但事后未给出正确解法 ,细究其原因 ,原来解答需用到所谓“等值线法”。题 设(Ⅰ ) 2≤x +y≤ 41≤x -y≤ 2①②求  4x -2 y的范围。解法一 令S =4x -2 y ,建立直角坐标系XOY ,分别作出直线l1: x +y =2 ,l2 : x +y =4,l3: x -y =1 ,l4 : x -y =2 ,如图 ,图中阴影部分即为目标函数 :S =4x -2y的可行区域。将S =4x -2 y变形为 y=2x -12 S。赋于S不同的值 ,在平面上得一组平行线l(虚线表示 ) ,每一条线上的S取值是不变的 (等值 )。从图中可看出 :当l: y =2x -12 S过l2 : x +y =4与…  相似文献   

19.
<正>在方程有解、不等式恒成立等问题中求参数的取值范围时,如果能够把参数分离出来,即方程或不等式的一端为参数,另一端为某个变量的代数式,则只要研究其对应函数的性质即可根据问题的具体设问得出参数的取值范围。下面我们就来谈谈分离参数法在解参数取值范围问题中的应用。例1已知函数f(x)=(ax2+x-1)·e x(a<0),当a=-1时,函数y=f(x)与g(x)=1/3x2+x-1)·e x(a<0),当a=-1时,函数y=f(x)与g(x)=1/3x3+1/2x3+1/2x2+m的图像有三个不同  相似文献   

20.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号