首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

We designed a laboratory test with variable fixed intensities to simulate cross-country mountain biking and compared this to more commonly used laboratory tests and mountain bike performance. Eight competitive male mountain bikers participated in a cross-country race and subsequently did six performance tests: an individual outdoor time trial on the same course as the race and five laboratory tests. The laboratory tests were as follows: an incremental cycle test to fatigue to determine peak power output; a 26-min variable fixed-intensity protocol using an electronically braked ergometer followed immediately by a 1-km time trial using the cyclist's own bike on an electronically braked roller ergometer; two 52-min variable fixed-intensity protocols each followed by a 1-km time trial; and a 1-km time trial done on its own. Outdoor competition time and outdoor time trial time correlated significantly (r = 0.79, P < 0.05). Both outdoor tests correlated better with peak power output relative to body mass (both r = ?0.83, P < 0.05) than absolute peak power output (outdoor competition: r = ?0.65; outdoor time trial: r = ?0.66; non-significant). Outdoor performance times did not correlate with the laboratory tests. We conclude that cross-country mountain biking is similar to uphill or hilly road cycling. Further research is required to design sport-specific tests to determine the remaining unexplained variance in performance.  相似文献   

2.
Thirty-eight competitive cross-country skiers were divided into three groups to assess the reliability and validity of a new double poling ergometer. Group A (n = 22) performed two maximal 60-s tests, Group B (n = 8) repeated peak oxygen uptake tests on the double poling ergometer, and Group C (n = 8) performed a maximal 6-min test on the double poling ergometer and a double poling time-trial on snow. The correlation between the power calculated at the flywheel and the power applied at the base of the poles was r = 0.99 (P < 0.05). The power at the poles was 50-70% higher than that at the flywheel. There was a high test-retest reliability in the two 60-s power output tests (coefficient of variation = 3.0%) and no significant difference in peak oxygen uptake in the two 6-min all-out tests (coefficient of variation = 2.4%). There was a strong correlation between the absolute (W) and relative power (W x kg(-1)) output in the 6-min double poling ergometer test and the double poling performance on snow (r = 0.86 and 0.89 respectively; both P < 0.05). In conclusion, our results show that the double poling ergometer has both high reliability and validity. However, the power calculated at the flywheel underestimated the total power produced and needs to be corrected for in ergonomic estimations.  相似文献   

3.
The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   

4.
The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

5.
The purpose of the study was to investigate which physiological parameters would most accurately predict a 6-min, all-out, double-poling (DP) performance in recreational cross-country skiers. Twelve male recreational cross-country skiers performed tests consisting of three series lasting 10 s, one lasting 60 s, plus a 6-min, all-out, DP performance test to estimate mean and peak power output. On a separate day, gross mechanical efficiency (GE) was estimated from a 10-min, submaximal, DP test and maximal oxygen consumption (VO2 max) was estimated from an incremental treadmill running test. Power was measured after each stroke from the acceleration and deceleration of the flywheel that induced the friction on the ergometer. The power was shown to the skier on a small computer placed on the ergometer. A multivariable correlation analysis showed that GE most strongly predicted 6-min DP performance (r = 0.79) and interestingly, neither DP VO2 max, nor treadmill-running VO2 max, correlated with 6-min DP performance. In conclusion, GE correlated most strongly with 6-min DP performance and GE at the ski ergometer was estimated to be 6.4 ± 1.1%. It is suggested that recreational cross-country skiers focus on skiing technique to improve gross mechanical efficiency during intense DP.  相似文献   

6.
Differences in gender and performance in off-road triathlon   总被引:1,自引:1,他引:0  
The aims of this study were: (1) to examine performance trends and compare elite male and female athletes at the off-road triathlon (1.5-km swim, 30-km mountain biking, and 11-km trail running) world championships since its inception in 1996, and (2) to compare gender-related differences between off-road triathlon and conventional road-based triathlon. Linear regression analyses and ANOVA were used to examine performance trends and differences between the sexes. Elite male performance times stabilized over the 2005-2009 period, whereas elite female performance times continued to improve, especially for the run leg. Differences in performance times between the sexes were less marked in swimming than in mountain biking and running, whereas differences in power output were more marked for mountain biking than for swimming and running. In addition, differences in cycling between the sexes were greater for off-road than conventional on-road triathlon. The specific aspects of mountain biking (e.g. level and terrain) may partly explain the significant differences between the sexes recorded in cycling for off-road triathlon. Future studies will need to focus on the physiological bases of off-road triathlon and how they differ from conventional triathlon.  相似文献   

7.
The purpose of this study was to analyse the effect of bike type – the 26-inch-wheel bike (26“ bike) and the 29-inch-wheel bike (29“ bike) – on performance in elite mountain bikers. Ten Swiss National Team athletes (seven males, three females) completed six trials with individual start on a simulated cross-country course with 35 min of active recovery between trials (three trials on a 26“ bike and three trials on a 29“ bike, alternate order, randomised start-bike). The course consisted of two separate sections expected to favour either the 29“ bike (section A) or the 26“ bike (section B). For each trial performance, power output, cadence and heart rate were recorded and athletes’ experiences were documented. Mean overall performance (time: 304 ± 27 s vs. 311 ± 29 s; P < 0.01) and performance in sections A (P < 0.001) and B (P < 0.05) were better when using the 29“ bike. No significant differences were observed for power output, cadence or heart rate. Athletes rated the 29“ bike as better for performance in general, passing obstacles and traction. The 29“ bike supports superior performance for elite mountain bikers, even on sections supposed to favour the 26“ bike.  相似文献   

8.
The aim of this study was to assess the relationship between several commonly used aerobic and anaerobic cycle ergometer tests and performance during a treadmill cycling hill climb. Eight competitive cyclists (age 27+/-7 years; body mass 73.2+/-5.2 kg; height 177+/-6 cm; mean +/- s) completed six tests in random order: a lactate minimum test; a Wingate anaerobic power test; and two 6-km climbs at 6% and two 1-km climbs at 12% gradient performed on a motorized treadmill. The mean times and power outputs for the 6-km and 1-km climbs were 16:30+/-1:08 min: s and 330+/-17.8 W, and 4:19+/-0:27 min: s and 411+/-24.4 W, respectively. The best individual predictor of 6-km and 1-km performance times was the time for the corresponding climb at the other distance (r = 0.97). The next strongest predictor of both hill climb performances was the average power produced during the Wingate test divided by body mass. Stepwise regression analysis showed that the two variables contributing most to the prediction equation for both climbs were the Wingate average power per unit of body mass and maximal aerobic power divided by total mass (rider + bike), which together accounted for 92 and 96% of the variability in the 6-km and 1-km climbs. In conclusion, among competitive cyclists, the Wingate average power per unit of body mass was the best single predictor of simulated cycling hill climb performance at the distance and gradient used.  相似文献   

9.
Diurnal variation in cycling performance: influence of warm-up   总被引:2,自引:0,他引:2  
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in "morningness". Eight male cyclists (mean +/- s: age = 24.9 +/- 3.5 years, peak power output = 319 +/- 34 W, chronotype = 39 +/- 6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30 h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30 s), but mean cycling time was still significantly slower at 07:30 h than at 17:30 h after the warm-up (95% CI for difference = 33 to 66 s). Intra-aural temperature increased as the time trial progressed (P < 0.0005) and was significantly higher throughout the time trials at 17:30 h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30 h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards 'morningness', and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

10.
Abstract

Thirty-eight competitive cross-country skiers were divided into three groups to assess the reliability and validity of a new double poling ergometer. Group A (n = 22) performed two maximal 60-s tests, Group B (n = 8) repeated peak oxygen uptake tests on the double poling ergometer, and Group C (n = 8) performed a maximal 6-min test on the double poling ergometer and a double poling time-trial on snow. The correlation between the power calculated at the flywheel and the power applied at the base of the poles was r = 0.99 (P < 0.05). The power at the poles was 50 – 70% higher than that at the flywheel. There was a high test – retest reliability in the two 60-s power output tests (coefficient of variation = 3.0%) and no significant difference in peak oxygen uptake in the two 6-min all-out tests (coefficient of variation = 2.4%). There was a strong correlation between the absolute (W) and relative power (W · kg?1) output in the 6-min double poling ergometer test and the double poling performance on snow (r = 0.86 and 0.89 respectively; both P < 0.05). In conclusion, our results show that the double poling ergometer has both high reliability and validity. However, the power calculated at the flywheel underestimated the total power produced and needs to be corrected for in ergonomic estimations.  相似文献   

11.
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in “morningness”. Eight male cyclists (mean?±?s: age = 24.9?±?3.5 years, peak power output = 319?±?34?W, chronotype = 39?±?6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30?h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30?s), but mean cycling time was still significantly slower at 07:30?h than at 17:30?h after the warm-up (95% CI for difference = 33 to 66?s). Intra-aural temperature increased as the time trial progressed (P <?0.0005) and was significantly higher throughout the time trials at 17:30?h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30?h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards ‘morningness’, and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

12.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

13.
PurposeThe purpose of this study was to compare the effects of intermittent sprint training and plyometric training on endurance running performance.MethodsFourteen moderately trained male endurance runners were allocated into either the intermittent sprint training group (n = 7) or the plyometric training group (n = 7). The preliminary tests required subjects to perform a treadmill graded exercise test, a countermovement jump test for peak power measurement, and a 10-km time trial. Training included 12 sessions of either intermittent sprint or plyometric training carried out twice per week. On completion of the intervention, post-tests were conducted.ResultsBoth groups showed significant reduction in weekly training mileage from pre-intervention during the intervention period. There were significant improvements in the 10-km time trial performance and peak power. There was also significant improvement in relative peak power for both groups. The 10-km time trial performance and relative peak power showed a moderate inverse correlation.ConclusionThese findings showed that both intermittent sprint and plyometric training resulted in improved 10-km running performance despite reduction in training mileage. The improvement in running performance was accompanied by an improvement in peak power and showed an inverse relationship with relative peak power.  相似文献   

14.
There is currently a dearth of information describing cycling performance outside of propulsive and physiological variables. The aim of the present study was to utilise a brake power meter to quantify braking during a multi-lap cross-country mountain bike time trial and to determine how braking affects performance. A significant negative association was determined between lap time and brake power (800.8 ± 216.4 W, mean ± SD; r = ?0.446; p < 0.05), while the time spent braking (28.0 ± 6.4 s) was positively associated with lap time (314.3 ± 37.9 s; r = 0.477; p < 0.05). Despite propulsive power decreasing after the first lap (p < 0.05), lap time remained unchanged (p > 0.05) which was attributed to decreased brake work (p < 0.05) and brake time (p < 0.05) in both the front and rear brakes by the final lap. A multiple regression model incorporating braking and propulsion was able to explain more of the variance in lap time (r2 = 0.935) than propulsion alone (r2 = 0.826). The present study highlights that riders’ braking contributes to mountain bike performance. As riders repeat a cross-country mountain bike track, they are able to change braking, which in turn can counterbalance a reduction in power output. Further research is required to understand braking better.  相似文献   

15.
Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption (VO2) determined every 15 s. The mean (+/- s) time-trial time was 359 +/- 33 s, with a mean power output of 65 +/- 16 W and mean stroke rate of 56 +/- 4 strokes min(-1). Mean values for peak VO2, peak heart rate, and mean heart rate were 3.17 +/- 0.67 litres min(-1), 177 +/- 11 beats min(-1), and 164 +/- 12 beats min(-1) respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak VO2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

16.
In this study, we assessed the performance of trained senior (n = 6) and veteran (n = 6) cyclists (mean age 28 years, s = 3 and 57 years, s = 4 respectively). Each competitor completed two cycling tests, a ramped peak aerobic test and an indoor 16.1-km time-trial. The tests were performed using a Kingcycle ergometer with the cyclists riding their own bicycle fitted with an SRM powermeter. Power output, heart rate, and gas exchange variables were recorded continuously and blood lactate concentration [HLa] was assessed 3 min after the peak ramped test and at 2.5-min intervals during the time-trial. Peak values for power output (RMP(max)), heart rate (HR(peak)), oxygen uptake (VO2(peak)), and ventilation (V(Epeak)) attained during the ramped test were higher in the senior group (P < 0.05), whereas [HLa](peak), RER(peak), V(E): VO2(peak), and economy(peak) were similar between groups (P > 0.05). Time-trial values (mean for duration of race) for power output (W(TT)), heart rate (HR(TT)), VO2 (VO(2TT)), and V(E) (V(ETT)) were higher in the seniors (P < 0.05), but [HLa](TT), RER(TT), V(ETT): VO2(TT), and economy(TT) were similar between the groups (P > 0.05). Time-trial exercise intensity, expressed as %RMP(max), %HR(peak), % VO2(peak), and % V(Epeak), was similar (P > 0.05) for seniors and veterans (W(TT): 81%, s = 2 vs. 78%, s = 8; HR(TT): 96%, s = 4 vs. 94%, s = 4; VO2(TT): 92%, s = 4 vs. 95%, s = 10; V(ETT): 89%, s = 8 vs. 85%, s = 8, respectively). Overall, seniors attained higher absolute values for power output, heart rate, VO2, and V(E) but not blood lactate concentration, respiratory exchange ratio (RER), V(E): VO2, and economy. Veterans did not accommodate age-related declines in time trial performance by maintaining higher relative exercise intensity.  相似文献   

17.
Abstract

The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 ± 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 ± 129 W and 75 ± 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 ± 9 beats · min?1 (89% of age-predicted maximum heart rate). Mean cadence (27 ± 5 rev · min?1) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

18.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3 - 6.5 vs 74.7 - 3.8 kg, P = 0.01; mean - s ) and leaner than the road cyclists (sum of seven skinfolds: 33.9 - 5.7 vs 44.5 - 10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3 - 0.5 vs 5.8 - 0.3 W·kg -1 , P = 0.03), at the lactate threshold (5.2 - 0.6 vs 4.7 - 0.3 W·kg -1 , P = 0.048) and during the 30 min time-trial (5.5 - 0.5 vs 4.9 - 0.3 W·kg -1 , P = 0.02). Similarly, peak oxygen uptake relative to body mass was higher in the mountain bikers (78.3 - 4.4 vs 73.0 - 3.4 ml·kg -1 ·min -1 , P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

19.
In this study, we assessed age-related changes in indoor 16.1-km cycling time-trial performance in 40 competitive male cyclists aged 25-63 years. Participants completed two tests: (1) a maximal ramped Kingcycle ergometer test, with maximal ramped minute power (RMPmax, W) recorded as the highest mean external power during any 60 s and maximal heart rate (HRmax, beats min(-1)) as the highest value during the test; and (2) an indoor Kingcycle 16.1-km time-trial with mean external power output (W), heart rate (beats min(-1)), and pedal cadence (rev min(-1)) recorded throughout the event. Results revealed age-related declines (P < 0.05) in absolute and relative time-trial external power output [(24 W (7.0%) per decade], heart rate [7 beats min(-1) (3.87%) per decade], and cadence [3 rev min(-1) (3.1%) per decade]. No relationships (P > 0.05) were observed for mean power output and heart rate recorded during the time-trial versus age when expressed relative to maximal ramped minute power and maximal heart rate respectively. Strong relationships (P < 0.05) were observed for maximal ramped minute power and time-trial power (r= 0.95) and for maximal heart rate and time-trial heart rate (r= 0.95). Our results show that indoor 16.1-km time-trial performance declines with age but relative exercise intensity (%RMPmax and %HRmax) does not change.  相似文献   

20.
Physiological correlates to off-road cycling performance   总被引:1,自引:1,他引:0  
The aim of this study was to examine the relationships between maximal and submaximal tests for aerobic fitness and performance in an off-road cross-country circuit race. Thirteen competitive off-road male cyclists participated in the study. Peak oxygen uptake (VO2peak), peak power output, and lactate thresholds corresponding to 1 mmol x l(-1) above baseline (lactate threshold) and to 4 mmol x l(-1) (onset of blood lactate accumulation) were measured during an incremental cycling test. Race time and final ranking within the same group of cyclists were determined during a cross-country off-road competition. All correlations between the measured parameters of aerobic fitness and off-road cycling performance were significant, particularly between race time and physiological parameters scaled to body mass0.79 (r = -0.68 to -0.94; P < 0.05) and between final ranking and physiological parameters expressed relative to body mass0.79 (r = -0.81 to - 0.96; P < 0.001). Moreover, there was a large difference (effect sizes = 1.12-1.70) in all measured parameters of aerobic fitness between the group of six cyclists with a race time above the median and the group of six cyclists with a race time below the median (P < 0.05). In conclusion, the results of this study provide empirical support to the widespread use of these maximal (VO2peak, peak power output) and submaximal (lactate thresholds) parameters of aerobic fitness in the physiological assessments of off-road cyclists. Furthermore, our results suggest body size should be taken into account when evaluating such athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号