首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设三次函数为f(x)=ax3 bx2 cx d(a≠0),其导函数f′(x)=3ax2 2bx c的判别式为△=4b2-12ac则有以下性质:1.当△≤0时,三次函数(fx)在R上是单调函数;(1)当△≤0且a>0时;函数f(x)在R上单调递增,(2)当△≤0且a<0时;函数f(x)在R上单调递减。它们的图像形如下图:2.当△>0时,三次函数f  相似文献   

2.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

3.
设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f'(x)=3ax2+2bx+c的判别式为△=4ab2-12ac,则有以下性质。1.△≤0时,三次函数f(x)在R上是单调函数。(1)当△≤0且a>0时,函数f(x)在R上单调递增。(2)当△≤0且a<0时,函数f(x)在R上单调递减。它们的图象如下图1、2。例说三次函数图象性质的应用$昆明三中@张邦宁  相似文献   

4.
20 0 2年的高考数学压轴题是 :已知 a>0 ,函数 f( x) =ax- bx2 .( )当 b>0时 ,若对任意 x∈ R都有f ( x)≤ 1 ,证明 a≤ 2 b ;( )当 b>1时 ,证明 :对任意 x∈ [0 ,1 ],| f ( x) |≤ 1的充要条件是 b- 1≤ a≤ 2b ;( )当 0 相似文献   

5.
张碧宇 《高中生》2008,(22):70-71
一、不等式性质应用中的错误例1设f(x)=ax~2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.错解由已知得(1≤a-b≤2,①2≤a+b≤4.②)由①+②得3/2≤a≤3.又由①式得-2≤b-a≤-1.③由②+③得0≤b≤3/2.∴6≤4a≤12,-3≤-2b≤0.∴3≤4a-2b≤12.  相似文献   

6.
《考试》2007,(Z2)
1.二次函数的一般式y=ax~2 bx c(c≠0)中有三个参数a,b,c.解题的关键在于:通过三个独立条件"确定"这三个参数.例1.已知f(x)=ax~2 bx,满足1≤f(-1)≤2且2≤f (1)≤4,求f(-2)的取值范围.分析:本题中,所给条件并不足以确定参数a,b的值,但应该注意到:所要求的结论不是f(-2)的确定值,  相似文献   

7.
本文讨论非线性两点边值问题 x″=f(t,x,x′),x(0)=x(1)=0, 在f,f_x,f_(x')连续,f_x≥—β(t),0≤β(t)≤π~2,β(1/2)≠π~2,|f_(x')|≤α=const以及α与β(t)满足一定关系时,证明非线性边值问题有唯一解。  相似文献   

8.
设函数f(x)=ax2+bx+c(-1≤x≤1),则f(1)=a+b+c,f(0)=c,f(-1)=a-b+c,解得a=1/2f(1)+1/2f(-1)-f(0),b=1/2f(1)-1/2f(-1),c=f(0),从而有f(x)=[1/2f(1)+1/2f(-1)-f(0)]x2+[1/2f(1)-1/2f(-1)]x+f(0),利用这一表示形式可以解下列竞赛题.  相似文献   

9.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

10.
一、一类计算题解法剖析例1 设f(x)=ax~2+bx。且 1≤f(-1)≤2,2≤f(1)≤4。求f(-2)的范围。(选自文[1]) 解1 学生们对此题最易想到的解法是由题设得(2)+(1)得3/2≤a≤3,(2)-(1)得0≤b≤3/2,故 3≤4a-2b≤12,即3≤f(-2)≤12。剖析满足不等式 (1)的区域是介于平行直线a-b-2=0和a-b-1=0之间的平面带包括边界。满足不等式 (2)的区域是介于平行直线a+6-2=0和a+b-4=0之间的平面带包括边界。故不等式组Ⅰ的解区域为图1中有阴影的矩形。而不等式组  相似文献   

11.
在高中数学教学中 ,对函数的图象及性质的学习占有相当的比例 ,特别是对一些典型函数的研究可以培养思维能力 ,提高思维品质 .本文简要介绍函数 f(x) =ax +bx(a>0 ,b>0 )的性质 (单调性、值域和图象 )及应用 .一、函数 f(x)的性质1 单调性函数 f(x) =ax+bx(a>0 ,b>0 )的定义域为 ( -∞ ,0 )∪ ( 0 ,+∞ ) .由于 f( -x) =-f(x) ,所以函数 f(x)是奇函数 .先讨论 f(x)在 ( 0 ,+∞ )上的单调性 .设 0 相似文献   

12.
一、判别式法对于二次函数f(x)=ax2+bx+c(a≠0),若f(x)≥0恒成立,则{a>0,Δ≤0;若f(x)≤0恒成立,则{a<0,Δ≤0.例1奇函数f(x)是R上的减函数,若对任意x∈R,有f(kx)+f(-x2+x-2)>0恒成立,求k的取值范围.解析由已知得:  相似文献   

13.
袁琳 《高中生》2013,(9):18-19
策略一:数形结合 例1函数f(x)=ax3+bx2+cx+d的图像如图所示f'(x)为函数f(x)的导函数,则不等式xf’(x)≤0的解集为  相似文献   

14.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

15.
1.(2000年济南卷)对于函数f(x)=x2+bx+c(b、c∈R),不论α、β为任何实数恒有f(sina)≥0,f(2+cosβ)≤0,(1)求证:b+c=1;(2)求证:c≥3;(3)若f(sina)的最大值为8,求b,c的值.、简答:(1)只有f(1)=1+b+c=0;(2)根据(1)可得f(x)=(x-1)(x-c).-1≤x≤c;(3)c=3.b=-4.  相似文献   

16.
随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质.1单调性三次函数f(x)=ax3+bx2+cx+d(a>0).(1)若b2-3ac≤0,则f(x)在(-∞,+∞)上为增函数;(2)若b2-3ac>0,则f(x)在(-∞,x1)和(x2,+∞)上为增函数,f(x)在(x1,x2)上为减函数,其中x1=-b-3ab2-3ac,x2=-b+3ab2-3ac.证明f′(x)=3ax2+2bx+c,Δ=4b2-12ac=4(b2-3ac).(1)当Δ≤0,即b2-3ac≤0时,f′(x)≥0在R上恒成立,即f(x)在(-∞,+∞)为增函数.(2)当Δ>0,即b2-3ac>0时,解方程f′(x)=0,…  相似文献   

17.
函数与导数     
1.(安徽卷,文7)图1中的图象所表示的函数的解析式为( ).A.y=3/2|x-1|(0≤x≤2)B.y=3/2-3/2|x-1|(0≤x≤2)c.y=3/2-|x-1|(0≤x≤2)D.y=1-|x-1|(0≤x≤2)解答途径:将点(1,3/2)与(2,0)代入,选项 A、选项 C、选项 D 均不适合,选项 B 适合.故选 B.解题感悟:用特殊点法解答此题不失为一种好的方法.教学中应强化符号语言、图形语言、文字语言之间的相互转换.本题就是一个图形转换成符号的问题。2.(江苏卷,9)已知二次函数 f(x)=ax~2 bx c的导数为 f′(x),f′(0)>0,对于任意实数 x,有 f(x)≥0,则 f(1)/f′(0)的最小值为( ).A.3 B.5/2 C.2 D.3/2  相似文献   

18.
一无二次方程ax~2 bx c=0(a≠0)根的判别式Δ=b~2-4ac常用于解方程、判别根的性质以及求解有关直线与二次曲线的位置关系等问题。除此之外,如能创造必要的条件,还可用判别式解其他某些题目,下面举例加以说明。 (一) 根据二次函数f(x)=ax~2 bx c(a≠0)的图象,容易得到:当a>0,Δ=b~2-4ac≤0时,则f(x)≥0;若a<0,Δ=b~2-4ac≤0时,则f(x)≤0。  相似文献   

19.
刘瑞美 《考试》2010,(Z1):115-118
一、与函数、导数和方程的交汇例1已知函数f(x)=(1/3)x~3+(1/2)ax~2+bx,a,b∈R,f′(x)是函数f(x)的导数。若-1≤a≤1,-1≤b≤1,求函数f′(x)在R上有零点的概率。分析:函数f′(x)在R上有零点即要求x~2+ax+b=0有实数根,只需根据一元二次方程有实数根的条件得出相应的不等关系,画出  相似文献   

20.
正一、案例分析题目:已知二次函数f(x)=ax~2+bx+c的图像过点(-1,0),问是否存在常数a,b,c,使不等式x≤f(x)≤1/2(1+x~2)对一切x∈R都成立?此题不仅在辅导资料上流传甚广,而且它有一种奇妙的解法也比较流行,那就是:对于不等式x≤f(x)≤1/2(1+x~2),令x=1,得到1≤f(1)≤1,从而知f(1)=1,即a+b+c=1①;然后根据二次函数f(x)=ax~2+bx+c的图像过点(-1,0),知a-b+c=0②,由①、②知b=1/2,a+c=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号