首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
For a class of switched nonlinear systems with unmatched external disturbances and unknown backlash-like hysteresis, an adaptive fuzzy-based control strategy is proposed to handle the anti-disturbance issue. The unmatched external disturbances come from a switched exosystem. Our aim is to achieve the output tracking performance and the disturbance attenuation by using the adaptive fuzzy-based composite anti-disturbance control technique. First, based on the fuzzy logics, we design a switching adaptive fuzzy disturbance observer to estimate unmatched external disturbances. Second, a composite switching adaptive anti-disturbance controller is constructed. By means of the backstepping technique, disturbance estimations are added in each virtual control to offset the unmatched disturbances, which results in the different coordinate transformations. At last, the availability of the proposed approach is illustrated by a mass-spring-damper system.  相似文献   

2.
本文研究了一类具有关联延迟和系统参数不确定的非线性大系统的分散控制问题,系统的匹配/非匹配不确定参数范数有界。首先基于状态观测器设计时延独立的动态输出反馈控制律,并根据 稳定性理论推导并证明了在该控制律作用下系统稳定的充分条件。最后给出一个数值例子来说明本文结果的可行性,仿真结果表明设计出的控制器不仅使得闭环系统稳定而且保证系统不受参数不确定和时延的影响。  相似文献   

3.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

4.
This paper addresses an observer-based sliding mode control (SMC) approach for discrete-time systems with unmatched uncertainties. A modified sliding surface based on disturbance estimation and a sliding mode controller are designed to counteract with the unmatched disturbance. The proposed method exhibits the following three features. First, the hyperplane matrix is designed in a simple way based on the discrete-time Riccati equation. Second, a chattering-free SMC method is utilized. Third, the proposed approach retains the nominal performance of the system. The stability of the overall system is achieved and simulation results are presented to verify the effectiveness of the proposed method.  相似文献   

5.
A composite anti-disturbance control problem for a class of nonlinear systems is studied in this paper. There are two types of disturbances in the systems, one is the matched disturbance with bounded variation rate, the other is the unmatched time-varying disturbances. A nonlinear disturbance observer is designed to estimate the matched disturbances, which can be presented separately from the controller design. By integrating DOBC with back-stepping method, a composite DOBC and back-stepping controller is proposed, and the disturbance estimations are introduced into the design of virtual control laws to compensate the unmatched disturbances. In addition, it is proved that all the states in the closed-loop system are uniformly ultimate bounded (UUB). Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

6.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

7.
This paper studies the formation-containment control for multi-robot systems with two-layer leaders in the presence of parametric uncertainties, input disturbances and directed interaction topologies. To cope with the aforementioned issues, we establish a novel formation-containment control framework, where the analysis of the systems is carried out step by step. A hierarchical controller–estimator (HCE) algorithm, containing distributed sliding-mode estimators in each sub-algorithm, is proposed for the two-layer leaders system. Moreover, by invoking finite-time stable and input-to-state stable theories, the sufficient conditions for convergence of the proposed HCE algorithm are presented. Finally, numerous simulations are performed to demonstrate the validity of the theoretical results.  相似文献   

8.
This paper’s primary motivation is to construct a class of novel terminal sliding-mode (TSM) control to stabilize systems rapidly with reduced chattering. To this end, a novel sliding surface, coined as practical TSM (PTSM) manifold, is designed with the help of the logarithmic hyperbolic cosine function. Since the partial flatness, i.e. the Lipschitz continuity and the practical terminal attractiveness, of the proposed PTSM manifold results in its derivative nonsingularity, the super-twisting algorithm (STA) is employed to generate its finite-time reachability with reduced chattering. Once the proposed sliding surface is established, controlled states will quickly fall into a small neighborhood of the equilibrium and then asymptotically slide to zero with a local high gain. In addition, this method is extended to solve the control problem of systems with mismatched uncertainties. Several groups of simulations verify the superiority of proposed controllers.  相似文献   

9.
This paper proposes a time domain approach to deal with the regional eigenvalue-clustering robustness analysis problem of linear uncertain multivariable output feedback proportional-integral-derivative (PID) control systems. The robust regional eigenvalue-clustering analysis problem of linear uncertain multivariable output feedback PID control systems is converted to the regional eigenvalue-clustering robustness analysis problem of linear uncertain singular systems with static output feedback controller. Based on some essential properties of matrix measures, a new sufficient condition is proposed for ensuring that the closed-loop singular system with both structured and mixed quadratically-coupled parameter uncertainties is regular and impulse-free, and has all its finite eigenvalues retained inside the same specified region as the nominal closed-loop singular system does. Two numerical examples are given to illustrate the application of the presented sufficient condition.  相似文献   

10.
In this paper, the problem of output feedback robust H control for spacecraft rendezvous system with parameter uncertainties, disturbances and input saturation is investigated. Firstly, a full-order state observer is designed to reconstruct the full state information, whose gain matrix can be obtained by solving the linear matrix inequality (LMI). Subsequently, by combining the parametric Riccati equation approach and gain scheduled technique, an observer-based robust output feedback gain scheduled control scheme is proposed, which can make full use of the limited control capacity and improve the control performance by scheduling the control gain parameter increasingly. Rigorous stability analyses are shown that the designed discrete gain scheduled controller has faster convergence performance and better robustness than static gain controller. Finally, the performance and advantage of the proposed gain scheduled control scheme are demonstrated by numerical simulation.  相似文献   

11.
This study concentrates on the tracking control of teleoperation system subjected to robot uncertainties. The coupling of kinematic and dynamic uncertainties poses a challenge to construct the teleoperation controller. To overcome this difficulty, an observer-based approach is designed to ensure position tracking while compensating for the unfavorable effects arising from the uncertainties. First, two sliding-mode observers together with a novel power reaching law are constructed, upon which, the uncertainties will be estimated in finite time. Next, a controller is proposed to solve the finite-time convergence of the tracking errors. The settling time and the stability of the closed-loop system are derived by Lyapunov’s direct method. Simulation results are presented to testify the tracking performance of the suggested control.  相似文献   

12.
This paper studies the load mitigation problem for wind turbines by using active tuned mass dampers. A state space model for the tower/nacelle system is established with the consideration of tower/blade interaction. The uncertainties that appear in the damping matrix and natural frequencies are also considered in the controller design. External loads acting on the tower including the drag force induced by winds and the absolute base shear induced by the rotating blades are involved, and shaping filters for online generating these loads are proposed which can be easily implemented in numerical simulations. An adaptive sliding-mode controller is proposed to handle the system uncertainties, external disturbances and hard constraint, and also to improve the overall performance of the wind turbine system. Numerical simulations are performed to demonstrate the effectiveness of the proposed control law.  相似文献   

13.
《Journal of The Franklin Institute》2023,360(14):10605-10632
Relative degree (RD) approach is a powerful tool for obtaining system's input-output dynamics used for output tracking controller designs of minimum phase systems. Designs using the RD alone can fail due both to insufficient control authority in minimum phase systems, and instability of internal/zero dynamics attributed to nonminimum phase systems. A novel definition and a concept of Practical Generalized RD (PGRD) are proposed in this paper and are used in concert with Sliding Mode Control (SMC) to compensate for system perturbations in minimum phase systems. The use of known Generalized Relative Degree (GRD) in nonminimum phase systems allows for the elimination of internal dynamics. However, instability that emerges in the corresponding control dynamic extension is defeating any output tracking controller design. A novel methodology of using GRD for designing continuous SMC in nonminimum phase systems is presented. An algorithm for generating a bounded solution of the unstable dynamic extension is proposed and used in concert with SMC, allowing robust control design for nonminimum phase systems. The efficacy of the proposed GRD-based approaches is demonstrated on a minimum and nonminimum phase rocket attitude control problem both analytically and via simulation.  相似文献   

14.
This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven mothod and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.  相似文献   

15.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

16.
A novel adaptive sliding-mode control system is proposed in order to control the speed of an induction motor drive. This design employs the so-called vector (or field oriented) control theory for the induction motor drives. The sliding-mode control is insensitive to uncertainties and presents an adaptive switching gain to relax the requirement for the bound of these uncertainties. The switching gain is adapted using a simple algorithm which does not imply a high computational load. Stability analysis based on Lyapunov theory is also performed in order to guarantee the closed loop stability. Finally, simulation results show not only that the proposed controller provides high-performance dynamic characteristics, but also that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

17.
This paper investigates a quaternion-based finite-time cooperative attitude synchronization and tracking of multiple rigid spacecraft with a virtual leader subject to bounded external disturbances. Firstly, the communication network between followers is assumed to be an undirected graph and every follower can get a direct access to the virtual leader, by using two neighborhood attitude error signals, a novel chattering-free recursive full-order sliding mode control algorithm is proposed such that all follower spacecraft synchronize to the virtual leader in finite time. In the proposed algorithm, the sliding mode surface is constructed by two layers of sliding mode surfaces, which are called as the outer and the inner sliding mode surfaces. To achieve finite-time performance of sliding mode dynamics, the outer sliding mode surface is designed as a terminal sliding mode manifold, and the inner one is designed as a fast nonsingular terminal sliding mode manifold, respectively. Then, to reduce the heavy communication burden, a distributed recursive full-order sliding mode control law is designed by introducing a distributed finite-time sliding mode estimator such that only a subset of the group members has access to the virtual leader. Finally, a numerical example is illustrated to demonstrate the validity of the proposed results.  相似文献   

18.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

19.
This work aims to design a neural network-based fractional-order backstepping controller (NNFOBC) to control a multiple-input multiple-output (MIMO) quadrotor unmanned aerial vehicle (QUAV) system under uncertainties and disturbances and unknown dynamics. First, we investigated the dynamic of QUAV composed of six inter-connected nonlinear subsystems. Then, to increase the convergence speed and control precision of the classical backstepping controller (BC), we design a fractional-order BC (FOBC) that provides further degrees of freedom in the control parameters for every subsystem. Besides, designing control is a challenge as the FOBC requires knowledge of accurate mathematical model and the physical parameters of QUAV system. To address this problem, we propose an adaptive approximator that is a radial basis function neural network (RBFNN) included in FOBC to fix the unknown dynamics problem which results in the new approach NNFOBC. Furthermore, a robust control term is introduced to increase the tracking performance of a reference signal as parametric uncertainties and disturbances occur. We have used Lyapunov's theorem to derive adaptive laws of control parameters. Finally, the outcoming results confirm that the performance of the proposed NNFOBC controller outperforms both the classical BC , FOBC and a neural network-based classical BC controller (NNBC) and under parametric uncertainties and disturbances.  相似文献   

20.
In the presence of system uncertainties, external disturbances and input nonlinearity, this paper is concerned with the adaptive terminal sliding mode controller to achieve synchronization between two identical attractors which belong to a class of second-order chaotic system. The proposed controller with adaptive feedback gains can compensate nonlinear dynamics of the synchronous error system without calculating the magnitudes of them. Meanwhile, these feedback gains are updated by the novel adaptive rules without required that the bounds of system uncertainties and external disturbances have to be known in advance. Some sufficient conditions for stability are provided based on the Lyapunov theorem and numerical studies are performed to verify the effectiveness of presented scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号