首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the leader-following rotating formation control problem is investigated for second-order multi-agent systems with nonuniform time-delays. We propose a distributed algorithm to drive all agents to achieve a desired formation and orbit around a common point. By a frequency domain analysis method, the upper bound of the maximum time-delay is obtained. Finally, a numerical simulation is given to illustrate the obtained results.  相似文献   

2.
The ability to ensure the desired performance of the cooperative-antagonistic multi-agent networks (MANs) in the presence of communication constraints is an important task in many applications of real systems. In this paper, under the proposed event-triggered condition (ETC), different types of consensus are obtained under different network topology. We concentrates on the event-based bipartite consensus. It is shown that under the proposed ETC (i) the addressed cooperative-antagonistic network with arbitrary communication delays reaches bipartite consensus provided that the network is balanced; (ii) the network model reaches zero if the network is unbalanced. Further, to avoid the continuously verifying the triggering condition, a self-triggered algorithm is proposed for realizing the bipartite consensus of the network model. A numerical example is given to illustrate the effectiveness of the theoretical results.  相似文献   

3.
A novel adaptive event-triggered control protocol is developed to investigate the tracking control problem of multi-agent systems with general linear dynamics. By introducing the event-triggered control strategy, each agent can decide when to transfer its state to its neighbors at its own triggering instants, which can greatly reduce communication burden of agents. It is shown that the “Zeno phenomenon” does not occur by verifying that there exists a positive lower bound on the inter-event time intervals of agents under the proposed adaptive event-triggered control algorithm. Finally, an example is provided to testify the effectiveness of the obtained theoretical results.  相似文献   

4.
This paper addresses the containment control problem for discrete-time high-order multi-agent systems (MASs) with dynamically changing topologies and time-varying delays. By considering the influence of switching topologies, a distributed containment control protocol that only involves the agent’s own information and its neighbors’ partial information is given to make all the followers enter and keep moving in the convex hull formed by the static leaders. A novel technique is employed to transform the high-order MAS with dynamically changing topologies into a switched augmented system with nonnegative coefficient matrices, and then convert the convergence problem of the switched augmented system to a product problem of infinite time-varying row stochastic matrices. With the help of graph theory and the properties of stochastic indecomposable and aperiodic (SIA) matrices, a sufficient condition in terms of communication topologies is derived, that is, the high-order containment control with dynamically changing topologies and time-varying delays can be achieved if the union of the effective communication topologies across any time intervals with some given length contains a spanning forest rooted at the leaders. Finally, computer simulations are conducted to illustrate the efficiency of the theoretical findings.  相似文献   

5.
This work investigates the issue of the dissipativity-based asynchronous filtering for Markov jump discrete-time systems subject to mixed time delays. Different from the existing results on this topic, a kind of distributed time delay is fully considered, which randomly occurs. The aim of this paper is to determine the parameters of the designed asynchronous filter. By utilizing the convex optimization technique and stochastic analysis theory, some new sufficient conditions with less conservatism are established, which ensure the resulting error system is stochastically stable with the extended dissipative performance level. The superiority and availability of the developed approach are finally verified by some comparison examples.  相似文献   

6.
This paper investigates a stability problem for linear systems with time-varying delays. By constructing suitable augmented Lyapunov–Krasovskii functionals, improved stability criteria under various conditions of time-varying delays are derived within the framework of linear matrix inequalities (LMIs). Moreover, to reduce the computational burden caused by the non-convex term including h2(t), how to deal with it is applied by estimating it to the convex term including h(t). Finally, three illustrative examples are given to show the effectiveness of the proposed criteria.  相似文献   

7.
This paper is devoted to the reliable leader-following consensus realization for a class of nonlinear multi-agent systems. The parameters of every agent are assumed to encounter sudden changes, which are governed by a semi-Markov process. A control protocol which possesses the performance of resisting actuator faults is employed for ensuring the reliable leader-following consensus and an analysis result is established by using the Lyapunov–Krasovskii functional method. Then an easy-to-implement condition is proposed for the issue of leader-following reliable consensus realization. If the condition is satisfied, the desired controller gain can be obtained via the numerical solutions of a set of linear matrix inequalities. At last, the feasibility of the proposed scheme is well explained by an illustrated example.  相似文献   

8.
9.
10.
This paper investigates a new adaptive iterative learning control protocol design for uncertain nonlinear multi-agent systems with unknown gain signs. Based on Nussbaum gain, adaptive iterative learning control protocols are designed for each follower agent and the adaptive laws depend on the information available from the agents in the neighbourhood. The proper protocols guarantee each follower agent track the leader perfectly on the finite time interval and the Nussbaum-type item can seek control direction adaptively. Furthermore, the formation problem is studied as an extension. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method in this article.  相似文献   

11.
This paper mainly considers the consensus for first-order discrete-time multi-agent systems w.r.t. two key parameters, the step size T and the delay τ. First, the consensus is recast into the concurrent stability for a series of trinomials. Then, for each associated trinomial, we derive a necessary and sufficient stability condition, based on proving the two invariance properties for the asymptotic behavior of the critical unitary roots. As a result, the exhaustive consensus region in the T?τ parameter space (i.e., the parameter set such that the multi-agent system reaches a consensus iff T and τ belong to that set) is determined. Furthermore, we show that the obtained result also applies to systems with diverse input delays, through an extra sufficient consensus condition. Finally, two illustrative examples are presented.  相似文献   

12.
This paper deals with the exponential stability problem for a class of neutral singular systems with Markovian jump parameters. The considered systems involve time-varying delays not only in their state but also in their derivatives of state. By using the Lyapunov–Krasovskii functional method, some sufficient conditions are derived, which ensure that the considered systems are regular, impulse-free and exponentially stable. Finally, some numerical examples are employed to demonstrate the effectiveness of the obtained approaches.  相似文献   

13.
This paper deals with the leader-following consensus problem of multi-agent systems with the consideration that each agent can only transmit its position state to the neighbors at irregular discrete sampling times. In the proposed algorithm, a continuous-discrete time observer is designed for the continuous estimation of both position and velocity from the discrete position information of the neighbors. These estimated states are then used for designing a continuous control law which solves the leader-following consensus problem. Moreover, the dynamics of the leader is not fixed and can be controlled through an external input. The stability analysis has been carried out by employing the Lyapunov approach which provides sufficient conditions to tune the parameters according to the maximum allowable sampling period. The developed algorithm has been simulated and then tested on an actual multi-robot system consisting of three differential drive wheeled robots. Both simulation and hardware results validate the effectiveness of the control algorithm.  相似文献   

14.
This paper addresses the semi-global leader-following coordination problem of general linear multi-agent systems, in which the control input of each agent is steered by aperiodically intermittent saturated actuator. Both the case with only one virtual leader and the case with multiple virtual leaders are discussed. By using multiple Lyapunov stability theory and applying algebraic Riccati equation-based low-gain feedback technique, sufficient conditions guaranteeing semi-global consensus tracking and semi-global containment tracking are provided. Numerical simulations finally verify the theoretical analysis.  相似文献   

15.
The problem of reachable set estimation is studied for discrete-time bilinear system in this paper. Time-varying delays and bounded input disturbances are both considered in bilinear system. The aim is to find reachable set that converges from all the states of system with initial conditions. By constructing Lyapunov–Krasovskii functional, sufficient delay-dependent less conservative stable conditions of reachable set estimation are obtained for bilinear delay system via the reciprocally convex combination and delay partition approaches. The derived theorem can guarantee that all the states of system with initial conditions from some domain are bounded in an ellipsoid and all the states from other domain are converged exponentially within a ball. One simulation example is presented to illustrate the correctness of the derived result in this paper.  相似文献   

16.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

17.
In this paper, a distributed control protocol is presented for discrete-time heterogeneous multi-agent systems in order to achieve formation consensus against link failures and actuator/sensor faults under fixed and switching topologies. A model equivalent method is proposed to deal with the heterogeneous system consists of arbitrary order systems with different parameters. Based on graph theory and Lyapunov theory, stability conditions to solve formation consensus problem are developed for the underlying heterogeneous systems with communication link failures. In order to tolerate actuator/sensor faults, a distributed adaptive controller is proposed based on fault compensation. The desired control is designed by linear matrix inequality approach together with cone complementarity linearisation algorithm. After applying the new control scheme to heterogeneous systems under the directed topologies with link failures and faults, the resulting closed-loop heterogeneous system is validated to be stable. The effectiveness of the new formation consensus control strategy and its robustness are verified by simulations.  相似文献   

18.
We address the leader-following tracking consensus issue for a class of linear multi-agent systems (MASs) via dynamic event-triggered (DET) approaches in this paper. The DET communication mechanism is introduced by an additional internal dynamic variable, and is developed to schedule agents’ data transmission. State observers are also employed to tackle the scenario wherein inner information of follower agents are not available for measurement. And then, state-based and observer-based distributed control proposals are proposed on the basis of dynamic event-triggered mechanism (DETM), respectively. To avoid continuous measurement information monitor, we present a technical approach for generation of the combinational information from their own neighboring agents only at event instants. The stabilities of the resulting closed-loop systems, both state-feedback one and output-feedback one, are rigorously analyzed in theory, and it is proven that all signals in the closed-loop system are bounded and Zeno behavior is also excluded. Simulation examples are presented to illustrate the theoretical claims.  相似文献   

19.
This paper investigates consensus problem for heterogeneous discrete linear time-invariant (LTI) multi-agent systems subjected to time-varying network communication delays and switching topology. A new two-stage consensus protocol is proposed based on stochastic, indecomposable and aperiodic (SIA) matrix and pseudo predictive scheme. With pseudo predictive scheme the network delay is compromised. Consensus analysis based on seminorm is provided. Results give conditions for such systems with periodic switching topology and time-varying delays to reach consensus. Highlights of the paper include: the protocol can be implemented in a distributed manner; the pseudo predictive approach requires less computation and communication; the verification of consensus convergence does not require the global information about the communication topology; the protocol allows delay to be time-varying, topology to dynamically and asymmetrically switch and system mode to be unstable. Numerical and practical examples demonstrate the effectiveness of the theoretical results.  相似文献   

20.
This paper studies the stochastic leader-following consensus problem of discrete-time nonlinear multi-agent systems (MASs) with multiplicative noises. The measurement information obtained from agents’ neighbors is inevitably affected by communication uncertainties, where the multiplicative noise is one of the important communication uncertainties. Multiplicative noises together with the intrinsic nonlinear dynamics bring more difficulties in the consensus control design under the leader-following topology. To solve the problem, the parameter-dependent Lyapunov functions are constructed to analyze the consensus control of first-order and second-order MASs, respectively. Some sufficient conditions, explicitly related to control gains, intensity of multiplicative noises and the Lipschitz constant regarding nonlinear functions, are established for reaching the mean square (m.s.) and almost sure (a.s.) leader-following consensus. Specifically, the obtained conditions are some scalar inequalities, which are more convenient in engineering application. Numerical simulations are conducted to validate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号