首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents two novel general summation inequalities, respectively, in the upper and lower discrete regions. Thanks to the orthogonal polynomials defined in different inner spaces, various concrete single/multiple summation inequalities are obtained from the two general summation inequalities, which include almost all of the existing summation inequalities, e.g., the Jensen, the Wirtinger-based and the auxiliary function-based summation inequalities. Based on the new summation inequalities, a less conservative stability condition is derived for discrete-time systems with time-varying delay. Numerical examples are given to show the effectiveness of the proposed approach.  相似文献   

2.
Current Mode Control (CMC) is the standard approach to regulate DC-DC power converters in high performance applications, allowing to obtain a faster time-response and better closed-loop stability if compared to Voltage Mode Control (VMC). In the last decade, several algorithms have been proposed to improve standard CMC, most of them requiring to replace the original controller. However, it is common to have either analog or embedded CMC controllers which cannot be replaced easily in commercial power converters. Inspired by very recent results in the topic, this paper proposes a Model Predictive Control (MPC) external loop aimed at optimally modifying the set-point of a CMC loop to improve converter performance. The proposed configuration is directly applicable to any pre-compensated converter as it does not require changes on the already-in-place controller. Moreover, by leveraging a multi-rate implementation, the benefits of MPC are introduced in power conversion without affecting much the computational cost of the over-all control system, contrary to what would happen for a direct MPC implementation. Simulation and experimental results on a synchronous DC-DC buck converter, controlled by a standard CMC algorithm, confirm the benefits of the approach.  相似文献   

3.
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.  相似文献   

4.
In this paper, a new technique is introduced for chaos secure data communication. In this approach, in addition to the usually used techniques for data encryption, the concept of carrier encryption is introduced to increase the security level of the secure communication scheme. To fulfill this objective, at the transmitting end, two chaotic oscillators are coupled, and a set of inequality time dependent constraints with time dependent bounds is imposed on the generated chaotic signals. Moreover, to increase system complexity and its security level, the imposed set of constraints and their bounds are allowed to be changeable from one time period to another during the transmission process. As a result, the patterns of the generated chaotic signals are completely changed and the chaotic oscillator is completely encrypted. At the receiving end, the newly developed Constrained Smoothed Regularized Least Square (CSRLS) observer is used to synchronize the received constrained chaotic signals and hence retrieve the transmitted data. Using such an approach, the quality of the received information, measured by the Bit Error Rate (BER), is highly improved due to the superior performance of the developed CSRLS observer. The stability of the observer is analyzed, and simulation results are presented to show the efficiency and effectiveness of the proposed secure communication scheme.  相似文献   

5.
This paper mainly concerns with the stability analysis of the sampled-data nonlinear active disturbance rejection control (ADRC)-based control system. Firstly, a class of single-input-single-output (SISO) continuous plant is discretized using zero-order-hold (ZOH), and several kinds of digital implementation methods for the nonlinear extended state observer (NLESO) are newly proposed. Then the sampled-data nonlinear ADRC (NLADRC) based closed-loop system is transformed into a discrete-time Lurie-like system, to which linear matrix inequality (LMI)-based sufficient conditions for absolute stability and robust absolute stability are obtained. The sufficient conditions provide convenient and effective methods for determining the stability and its relationship with the parameters of the controller, the plant and the sampling period. Using the ball-beam system as an example, the proposed results are verified in both simulations and experiments.  相似文献   

6.
In this paper, an active fault tolerant control (AFTC) scheme is proposed for more electric aircraft (MEA) equipped with dissimilar redundant actuation system (DRAS). The effect of various fault/failure of hydraulic actuator (HA) on the system performance is analyzed in this work. In nominal condition, the state feedback control law is designed for primary control surfaces. In the presence of fault/failure of certain HA, control allocation (CA) scheme together with integral sliding mode controller (ISMC) is retrofitted with existing control law and engaged the secondary (redundant) actuators into the loop. A modified recursive least square (RLS) algorithm is proposed to identify the parametric faults in HA and to measure the effectiveness level of the actuator. In an event of failure of all HA’s in the system, electro hydraulic actuators (EHA) are taken in loop to bring the system back to its nominal operation. In order to stabilize the closed-loop dynamics of HA and EHA, fractional order controllers are designed separately for each actuator. Simulations on the lateral directional model of aircraft demonstrated the effectiveness of the proposed scheme as compared to the existing methods in the literature.  相似文献   

7.
8.
In this paper, the fault diagnosis (FD) and fault-tolerant tracking control (FTTC) problem for a class of discrete-time systems with faults and delays in actuator and measurement is investigated. In the first step, a discrete delay-free transformation approach is introduced for an constructed augmented system such that the two-point-boundary-value (TPBV) problem with advanced and delayed items can be avoided. Then, the optimal fault-tolerant tracking controller (OFTTC) is proposed with respect to an equivalent reformed quadratic performance index. Moreover, by using the real-time system output rather than the residual errors, a reduced-order-observer-based fault diagnoser for the augmented system is designed to diagnose faults in actuator and measurement, and solve the physically unrealizable problem of proposed OFTTC. Finally, the effectiveness of the proposed fault diagnoser and OFTTC is illustrated by a realistic design example for industrial electric heater.  相似文献   

9.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

10.
Augmenting feedback control systems with disturbance observer (DOB) is a widely used technique in system design to compensate for the effect of exogenous disturbances as well as plant model uncertainties. In practice, actuator saturation should be taken into account in the design of control systems with DOB. In such cases, we have observed performance degradation due to zero mean measurement noise in the form of tracking loss. This phenomenon has never been reported in DOB literature. This paper reports the phenomenon, analyzes the conditions under which the tracking loss occurs, and also presents design guidelines to avoid the tracking loss. Experimental verification is also provided using a BLDC motor drive testbed.  相似文献   

11.
Recently, a polynomials-based integral inequality was proposed by extending the Moon’s inequality into a generic formulation. By imposing certain structures on the slack matrices of this integral inequality, this paper proposes an orthogonal-polynomials-based integral inequality which has lower computational burden than the polynomials-based integral inequality while maintaining the same conservatism. Further, this paper provides notes on relations among recent general integral inequalities constructed with arbitrary degree polynomials. In these notes, it is shown that the proposed integral inequality is superior to the Bessel–Legendre (B–L) inequality and the polynomials-based integral inequality in terms of the conservatism and computational burden, respectively. Moreover, the effectiveness of the proposed method is demonstrated by an illustrative example of stability analysis for systems with additive time-varying delays.  相似文献   

12.
This paper considers a parameter-dependent controller design problem for a class of discrete-time uncertain systems subject to censored measurement. First, a set of mutually independent stochastic variables obeying uniform distribution is used to describe the system uncertainty. Then, an array of new bounded variables is introduced to characterize the boundedness of the censored measurement. In addition, a novel definition, named as finite-time boundedness in probability (FTBP), is presented to depict the dynamic behavior of addressed systems in the sense of probability. In this case, the norm of controlled system states cannot exceed a given boundary under a probability constraint. By means of the hyper-rectangle depending on the value range of stochastic variables, a sufficient condition is presented to ensure that the system is FTBP. Finally, the corresponding controller design problem is formulated as an algorithm based on the recursive linear matrix inequality. Two simulation examples are given to illustrate the effectiveness of the proposed methodology.  相似文献   

13.
In this paper, a new memory-based control problem is addressed for neutral systems with time-varying delay, input saturations and energy bounded disturbances. Attention is focused on the design of a memory-based state feedback controller such that the closed-loop system achieves the desirable performance indices including the boundedness of the state trajectories, the H disturbance rejection/attenuation level as well as the asymptotic stability. By using the combination of a novel delay-dependent polytopic approach, augmented Lyapunov–Krasovskii functionals and some integral inequalities, delay-dependent sufficient conditions are first proposed in terms of linear matrix inequalities. Then, three convex optimization problems are formulated whose aims are to, respectively, maximize the disturbance tolerance level, minimize the disturbance attenuation level and maximize the initial condition set. Finally, simulation examples demonstrate the effectiveness and benefits of the obtained results.  相似文献   

14.
This paper deals with the problem of state bounding for a class of nonlinear time-varying systems with delay and bounded disturbance. By using a model transformation and an approach developed in positive systems, new delay-dependent explicit conditions have been established to guarantee all the state trajectories of the system converge exponentially within a ball. Two illustrative examples are given to show that the obtained results can be applied to some cases not covered by preceding results.  相似文献   

15.
In this paper, a new predictor-based consensus disturbance rejection method is proposed for high-order multi-agent systems with Lipschitz nonlinearity and input delay. First, a distributed disturbance observer for consensus control is developed for each agent to estimate the disturbance under the delay constraint. Based on the conventional predictor feedback approach, a non-ideal predictor based control scheme is constructed for each agent by utilizing the estimate of the disturbance and the prediction of the relative state information. Then, rigorous analysis is carried out to ensure that the extra terms associated with disturbances and nonlinear functions are properly considered. Sufficient conditions for the consensus of the multi-agent systems with disturbance rejection are derived based on the analysis in the framework of Lyapunov–Krasovskii functionals. A simulation example is included to demonstrate the performance of the proposed control scheme.  相似文献   

16.
17.
The paper presents results for the second moment stability of continuous-time Markov jump systems with quadratic terms, aiming for engineering applications. Quadratic terms stem from physical constraints in applications, as in electronic circuits based on resistor (R), inductor (L), and capacitor (C). In the paper, an RLC circuit supplied a load driven by jumps produced by a Markov chain—the RLC circuit used sensors that measured the quadratic of electrical currents and voltages. Our result was then used to design a stabilizing controller for the RLC circuit with measurements based on that quadratic terms. The experimental data confirm the usefulness of our approach.  相似文献   

18.
In this paper, we consider the super-twisting observer-based sliding mode control algorithm with fuzzy variable gains (STOSMC) for the fully-actuated hexarotor. Our hexarotor has full actuation due to six titled propellers that allows to control position and orientation (attitude) simultaneously, and resolves the singularity problem of the rotational matrix by using the quaternion modeling framework. We show that the proposed STOSMC for the hexarotor guarantees finite-time convergence of the estimation error and asymptotic stability of the hexarotor. In simulations, we demonstrate the nonsingularity and fully-actuated control performance of the hexarotor by considering extreme position and attitude control scenarios. Moreover, the simulation results show that the hexarotor achieves the fast and precise tracking performance to the desired position and the desired attitude and the chattering phenomenon is reduced compared with the fixed-gains observer-based super-twisting sliding mode control due to the fuzzy mechanism.  相似文献   

19.
This paper considers the stabilization and destabilization of a given nonlinear system by an intermittent Brownian noise perturbation. We give some distinct conditions and conclusions on almost sure exponential stability and instability, which are related to the control period T and the noise width δ. These results are then exploited to examine stabilization and destabilization via intermittent stochastic perturbation and applied to the stabilization of a memristor-based chaotic system. Two numerical examples are presented to illustrate the theoretical results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号