首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new robust adaptive prescribed performance control (PPC, for short) scheme is proposed for quadrotor UAVs (QUAVs, for short) with unknown time-varying payloads and wind gust disturbances. Under the presented framework, the overall control system is decoupled into translational subsystem and rotational subsystem. These two subsystems are connected to each other through common attitude extraction algorithms. For translational subsystem, a novel robust adaptive PPC strategy is designed based on the sliding mode control technique to provide better trajectory tracking performance and well robustness. For rotational subsystem, a new robust adaptive controller is constructed based on backstepping technique to track the desired attitudes. Finally, the overall system is proved to be stable in the sense of uniform ultimate boundedness, and numerical simulation results are presented to validate the effectiveness of the proposed control scheme.  相似文献   

2.
This paper investigates the decentralized tracking control problem for a class of strict-feedback interconnected nonlinear systems with unknown parameters, where the system states are unmeasurable and the interconnections are unknown. Different from the existing results, where the output is available all the time, we consider the case that the output is only available at the sampled instants, which means the failure of existing methods. By introducing a kind of sampled observer for each subsystem, the system states and unknown parameters are jointly estimated. Based on which, a totally decentralized output feedback control scheme is developed to achieve the desired tracking performance by applying backstepping technique, where a compensation mechanism is utilized to address the unknown interconnections from other subsystems. Subsequently, by using Lyapunov stability theory, it is proved that all the signals in the closed-loop system are bounded and the tracking errors converge to an adjustable neighbourhood of the origin. Finally, an example is used to illustrate the effectiveness of the proposed method.  相似文献   

3.
基于颜色信息的多机器鱼并行视觉跟踪算法   总被引:2,自引:0,他引:2  
在多仿生机器鱼协作系统 (MRFS)中 ,如何快速、准确获取多机器鱼运动信息和环境信息是决策和控制的基础。介绍了MRFS中视觉子系统的实现及其多目标实时跟踪策略。结合机器鱼本体和场地背景的特征 ,提出了一种基于色度直方图和饱和度直方图的自适应阈值分割算法 ;同时 ,结合计算机并行处理技术 ,利用MMX指令和SSE指令 ,对整个跟踪算法进行了并行性优化。该视觉子系统已成功应用于MRFS中 ,能实时跟踪自由游动的机器鱼和多个障碍物  相似文献   

4.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

5.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

6.
This paper proposes a new adaptive region tacking control scheme with nonlinear error transformation for underwater vehicles based on barrier Lyapunov functions. In the new scheme, a redefinition of the tracking error is given by introducing nonlinear error transformation in prescribed performance control. Although the results created by the new scheme indicate a slight decrease in the tracking precision, the real tracking error will be still kept within the prescribed performance functions, while the control signals also become smoother, compared with the original prescribed performance control scheme. Then an approximation form of the control input with constraints, together with an improved Nussbaum function, is designed to derive the control law for underwater vehicles with thruster saturation and dead zone. Furthermore, a new velocity error variable is given by introducing an auxiliary variable to compensate the effect from thruster saturation. Finally, it is proved that the nonlinear system is semi-global practical finite-time stable and the tracking error is always kept within the prescribed boundaries. The effectiveness of the proposed region tracking control scheme is validated through simulation-based case studies on an underwater vehicle with measurement noise.  相似文献   

7.
This paper considers the control problem of spacecraft line-of-sight (LOS) relative motion with thrust saturation in the presence of unmodeled dynamics, external disturbance and unknown mass property. By using skew-symmetric property, reference trajectory generator and anti-windup technique, a novel passivity-based adaptive sliding mode control (SMC) scheme is proposed without prior knowledge of uncertainty/disturbance bound. Within the Lyapunov framework, the establishment of a real sliding mode (which induces the practical stability of closed-loop error system) is validated. The main contributions are that a new control gain adaptive algorithm is adopted to attenuate the overestimation of switching gain and a differentiable projection-based parameter adaptive algorithm is proposed to force the mass approximator to remain in a desired domain, then the adaptive control law is modified by the reference trajectory generator and anti-windup technique to compensate for the effect of thrust saturation. Finally, simulations are conducted to show the fine performance of proposed control scheme.  相似文献   

8.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

9.
Aiming at the consensus tracking control problem of multiple autonomous underwater vehicles (AUVs) with state constraints, a new neural network (NN) and barrier Lyapunov function based finite-time command filtered backstepping control scheme is proposed. The finite-time command filter is utilized to filtering the virtual control signal, the error compensation signal is constructed to eliminate filtering error due to the use of filter, and the NN approximation technology is used to deal with the unknown nonlinear dynamics. The control scheme can guarantee that the consensus tracking errors of position states converge into the desired neighborhood of the origin in finite-time while not exceeding the predefined constraints. Finally, simulation studies prove the feasibility of proposed control algorithm.  相似文献   

10.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

11.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

12.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

13.
This paper develops a robust adaptive neural network (NN) tracking control scheme for a class of strict-feedback nonlinear systems with unknown nonlinearities and unknown external disturbances under input saturation. The radial basis function NNs with minimal learning parameter (MLP) are employed to online approximate the uncertain system dynamics. The adaptive laws are designed to online update the upper bound of the norm of ideal NN weight vectors, and the sum of the bounds of NN approximation errors and external disturbances, respectively. An auxiliary dynamic system is constructed to generate the augmented error signals which are used to modify the adaptive laws for preventing the destructive action due to the input saturation. Moreover, the command filtering backstepping control method is utilized to overcome the shortcoming of dynamic surface control method, the tracking-differentiator-based control method, etc. Our proposed scheme is qualified for simultaneously dealing with the input saturation effect, the heavy computational burden and the “explosion of complexity” problems. Theoretical analysis illuminates that our scheme ensures the boundedness of all signals in the closed-loop systems. Simulation results on two examples verify the effectiveness of our developed control scheme.  相似文献   

14.
This paper develops a novel adaptive state tracking control scheme based on Takagi–Sugeno (T–S) fuzzy models with unknown parameters. The proposed method can deal with T–S models in a non-canonical form and allows the number of inputs to be less than state variables, which is more practical and has wider applications. The needed matching conditions for state tracking are relaxed by using a T–S fuzzy reference model to generate desired state reference signals. A new fuzzy estimator model is constructed whose states are compared with those of the T–S fuzzy model to generate the estimator state error which is used for the parameter adaptive law. Based on the Lyapunov stability theory, it has been proven that all the signals in the closed-loop system are bounded and the asymptotic state tracking can be achieved. The effectiveness of the proposed scheme is demonstrated through a magnetic suspension system and a transport airplane model.  相似文献   

15.
A novel robust hierarchical multi-loop composite control scheme is proposed for the trajectory tracking control of robotic manipulators subject to constraints and disturbances. The inner loop based on inverse dynamics control is used to reduce the nonlinear tracking error system to a set of decoupled linear subsystems to alleviate the computational effort during the sequel optimization. The feasible regions of the equivalent state and control input of each subsystem can be computed efficiently by choosing an appropriate inertia matrix estimate. The external loop, relying on a set of separate disturbance-observer-based tube model predictive composite controllers, is used to robustly stabilize the decoupled subsystems. In particular, the disturbance observers are designed to compensate for the disturbances actively, while the tube model predictive controllers are used to reject the residual disturbances. The robust tightened constraints are obtained by calculating the outer-bounding-tube-type residual disturbance invariant sets of the closed-loop subsystems. Furthermore, the recursive feasibility and input-to-state stability of the closed-loop system are investigated. The effectiveness of the proposed control scheme is verified by the simulation experiment on a PUMA 560 robotic manipulator.  相似文献   

16.
The probabilistic-constrained tracking control issue is investigated for a class of time-varying nonlinear stochastic systems with sensor saturation, deception attacks and limited bandwidth in an unified framework. The saturation of sensors is quantified by a sector-bound-based function satisfying certain conditions, and the random deception attacks are considered and modeled by a random indicator variable. To gain more efficient utilization of communication channels, a Round-Robin (RR) protocol is utilized to orchestrate the transmission order of measurements. The main purposes of this study aim to plan an observer-based tracking controller to achieve the following goals: (1) the related performance indicators of the estimation error is less than given bound at each time step; and (2) the violation probability of the tracking error confined in a predefined scope is supposed to be higher than a prescribed scalar and the area is minimized at each instant. In order to reach these requirements, a group of recursive linear matrix inequalities (RLMIs) are developed to estimate the state and design the tracking controller at the same time. Finally, two simulation examples are exploited to illustrate the availability and flexibility of the proposed scheme.  相似文献   

17.
Implementing human-like learning and control for nonlinear dynamical systems operating in different control situations is an important and challenging issue. This paper presents a pattern-based neural network (NN) control strategy for nonlinear pure-feedback systems via deterministic learning (DL). Firstly, an appropriately designed adaptive neural dynamic surface controller is proposed to achieve the finite time tracking control. By analyzing the recurrent property of NN input signals, a partial persistent excitation (PE) condition for radial basis function (RBF) network is established, the implicit desired control dynamics under different control situations are accurately identified via DL in the case that the dimension of NN input is reduced. And a set of pattern-based experienced actual and virtual controllers is constructed using the learned knowledge. Secondly, to classify different control situations, when the system is operating in different control situations but controlled by current normal experienced controller, the dynamics of each subsystem are accurately identified via DL, n sets of dynamical estimators are constructed using the learned knowledge. Thirdly, in the recognition phase, n sets of residuals are achieved by comparing each set of estimators with the monitored system, sudden change in the control situation is rapidly recognized based on the principle of the earliest occurrence of the minimum residual. Finally, in the control phase, according to the recognition result, the correct experienced actual and virtual controllers will be selected to control the plant, guaranteed stability and superior control performance are achieved without any further re-adaptation online. Simulation studies are given to verify the proposed scheme can not only acquire and memorize knowledge like humans, but also reuse the learned knowledge to achieve rapid recognition and control of current control situation.  相似文献   

18.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

19.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

20.
This paper addresses the problem of controlling a wave energy converter (WEC) susceptible to faults in its braking subsystems, characterized through nonlinear damping. By considering the necessity of robust trajectory tracking related to the sea waves for maximizing the converted energy, one aims to preserve such a trajectory in the presence of faults to avoid physical damage in the structure of the WEC. To achieve this objective, this paper proposes a fault-tolerant control (FTC) that combines two systems: (i) a novel nonlinear servocompensator (NSC) and (ii) a fault diagnosis subsystem (FD). The NSC is based on a variable structure control that generalizes the internal model principle for robust tracking. The reference signal is computed from real-time measurements of the irregular sea waves. The FD subsystem estimates the faults related to the wear of the brakes via an unknown input observer. Due to its independent performance from the FD, the global scheme can be considered as a passive FTC. By considering the faulty model of a WEC based on the Archimedes wave swing prototype, theoretical formulation and the convergence proof are given for the NSC and the FD. The performance of the proposed design is verified with numerical simulations of the WEC with the incidence of irregular sea waves under different fault scenarios in the upper and lower brakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号