首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a dynamically event-triggered filtering problem is investigated for a class of discrete time-varying systems with censored measurements and parameter uncertainties. The censored measurements under consideration are described by the Tobit measurement model. In order to save the communication energy, a dynamically event-triggered mechanism is utilized to decide whether the measurements should be transmitted to the filter or not. The aim of this paper is to design a robust recursive filter such that the filtering error covariance is minimized in certain sense for all the possible censored measurements, parameter uncertainties as well as the effect induced by the dynamically event-triggered mechanism. By means of the mathematical induction, an upper bound is firstly derived for the filtering error covariance in terms of recursive matrix equations. Then, such an upper bound is minimized by designing the filter gain properly. Furthermore, the boundedness is analyzed for the minimized upper bound of the filtering error covariance. Finally, two numerical simulations are exploited to demonstrate the effectiveness of the proposed filtering algorithm.  相似文献   

2.
A robust event-triggered distributed fusion algorithm is investigated in this paper for multi-sensor systems with unknown failure rates. A detection technique based on standard Gaussian distributed filtering innovation is designed and applied to judge whether the measurement is failed. This filtering innovation can also be used to construct the event-triggered condition. Specifically, the event condition is not triggered if the innovation is below the lower event-triggered threshold and the measurement is regarded as the failure measurement if the innovation exceeds the higher threshold. In the above two cases, the sensor measurement data is not transferred to the local estimator; otherwise, it will be transferred. Then, the sequential fast covariance intersection (SFCI) fusion algorithm is used for local estimation fusion. Besides, to analyze the estimation performance, sufficient conditions are given to demonstrate the boundness of the local estimation and fusion estimation covariance. Finally, a simulation example is given to show the usefulness of the presented algorithm.  相似文献   

3.
In this paper, the problem of asynchronous H filtering for singular Markov jump systems with redundant channels under the event-triggered scheme is studied. In order to save the resource of bandwidth limited network and improve quality of data transmission, we utilize event-triggered scheme and employ redundant channels. The redundant channels are modeled as two mutually independent Bernoulli distributed random variables. To formulate the asynchronization phenomena between the system modes and the filter modes, the hidden Markov model is proposed so that the filtering error system has become a singular hidden Markov jump system. The criterion of regular, causal and stochastically stable with a certain H performance for the filtering error system has been obtained. The co-design of asynchronous filter and the event-triggered scheme is proposed in terms of a group of feasible linear matrix inequalities. Two examples are given to show the effectiveness of the proposed method.  相似文献   

4.
This paper focuses on the dynamic event-based recursive filtering problem for a class of time-varying networked systems under the encoding-decoding mechanism. For the purpose of saving energy consumption, a dynamic event-triggered protocol is applied to determine whether the measurement of the sensor is transmitted or not. In the transmission process of the measurement, a dynamic-quantization-based encoding-decoding mechanism is introduced to encrypt the transmitted measurement. In specific, the measurement outputs are first encoded into codewords which are then transmitted from the encoder to the decoder. After received by the decoder, the codewords are first decoded and then sent to the filter. A bounded uncertainty is introduced to characterize the difference between the original measurement and the decoded measurement. This paper is devoted to developing a recursive filtering algorithm for the considered system such that a minimal upper bound on the filtering error covariance is derived through appropriately designing filter gain. Moreover, the mean-square exponential boundedness of the filtering error is analyzed. Finally, the efficiency and superiority of the proposed algorithm are verified through two simulation examples.  相似文献   

5.
This paper discusses the parameter estimation for a class of bilinear-in-parameter systems with colored noise. By utilizing the filtering technique, we derive the relationship between the filtered output and the measurement output and obtain two linear regressive sub-models. A filtering based multi-innovation stochastic gradient algorithm is derived for interactively identifying each sub-model. The proposed algorithm avoids the estimation of correlated noise and improves the parameter estimation accuracy by making full use of the measurement data. The numerical simulation results indicate that the proposed algorithm has higher estimation accuracy than the hierarchical multi-innovation stochastic gradient algorithm.  相似文献   

6.
王大平  王琳  邵艳秋  郝玲 《科技通报》2012,28(5):167-170
针对远程教育视频图像传输过程中,由于传输距离过长,图像传输信号会受到复杂外界环境因素的影响,造成视频图像传输信号衰减,导致远程教育视频图像中包含大量的非线性噪声,造成图像不清晰。提出了一种基于非线性滤波的远程教育视频图像清晰化处理算法。对远程教育视频图像中的噪声特征进行分类处理,利用非线性滤波算法进行去噪处理,从而实现了远程教育视频图像去噪处理。实验证明,这种算法能够避免由于传输距离过长导致的远程教育视频图像中存在大量噪声的缺陷,提高了远程教育视频图像清晰度。  相似文献   

7.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

8.
This paper studies the distributed Kalman consensus filtering problem based on the event-triggered (ET) protocol for linear discrete time-varying systems with multiple sensors. The ET strategy of the send-on-delta rule is employed to adjust the communication rate during data transmission. Two series of Bernoulli random variables are introduced to represent the ET schedules between a sensor and an estimator, and between an estimator and its neighbor estimators. An optimal distributed filter with a given recursive structure in the linear unbiased minimum variance criterion is derived, where solution of cross-covariance matrix (CCM) between any two estimators increases the complexity of the algorithm. In order to avert CCM, a suboptimal ET Kalman consensus filter is also presented, where the filter gain and the consensus gain are solved by minimizing an upper bound of filtering error covariance. Boundedness of the proposed suboptimal filter is analyzed based on a Lyapunov function. A numerical simulation verifies the effectiveness of the proposed algorithms.  相似文献   

9.
This paper investigates globally bounded consensus of leader-following multi-agent systems with unknown nonlinear dynamics and external disturbance via adaptive event-triggered fuzzy control. Different from existing works where filtering and backstepping techniques are applied to design controllers and event-triggered conditions, a matrix inequality is established to obtain the feedback gain matrix and event-triggered functions. To save communication resources, a new distributed event-triggered controller with fully discontinuous communication among following agents is designed. Meanwhile, a strictly positive minimum of inter-event time is provided to exclude Zeno behavior. Furthermore, to achieve globally bounded leader-following consensus, an adaptive fuzzy approximator and a parameter estimator are designed to approximate the unknown nonlinear dynamics and parameters, respectively. Finally, the effectiveness of the proposed method is validated via a simulation example.  相似文献   

10.
This paper considers the parameter and order estimation for multiple-input single-output nonlinear systems. Since the orders of the system are unknown, a high-dimensional identification model and a sparse parameter vector are established to include all the valid inputs and basic parameters. Applying the data filtering technique, the input-output data are filtered and the original identification model with autoregressive noise is changed into the identification model with white noise. Based on the compressed sensing recovery theory, a data filtering-based orthogonal matching pursuit algorithm is presented for estimating the system parameters and the orders. The presented method can obtain highly accurate estimates from a small number of measurements by finding the highest absolute inner product. The simulation results confirm that the proposed algorithm is effective for recovering the model of the multiple-input single-output Hammerstein finite impulse response systems.  相似文献   

11.
The study aims to explore the optimal actuator switching scheme of observer-based event-triggered state feedback control for distributed parameter systems. The performance of distributed parameter systems is improved through the observer-based event-triggered control, in which the state feedback is updated only when a triggered event happens. In such an event-triggered mechanism, the event-based closed-loop system and minimum time interval between consecutive events are bounded. Based on finite horizon linear quadratic regulator (LQR) optimal control, the optimal switching algorithm is proposed based on the event-triggered mechanism during an unfixed time interval. Finally, the proposed scheme is verified through a simulation case.  相似文献   

12.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

13.
This paper studies networked H filtering for Takagi–Sugeno fuzzy systems with multi-output multi-sensor asynchronous sampling. Different output variables in a dynamic system are sampled by multiple sensors with different sampling rates. To estimate the signals of such a system, a continuous multi-rate sampled-data fusion method is proposed to design a novel networked filter. By considering a class of decentralized event-triggered transmission schemes, multi-channel network-induced delays, and the updating modes of the MOMR sampled-data, a networked jumping fuzzy filter is proposed to estimate system signals based on the transmitted multi-rate sampled-data of fuzzy system and the multi-rate sampled states of filter, and the jumping among filter modes is governed by a Markov process which depends on the arrival times of sampled output sub-vectors. To deal with asynchronous membership functions, the networked fuzzy filtering system is modeled as an uncertain fuzzy stochastic system with membership function deviation bounds. Based on stability and H performance analysis, several membership-function-dependent conditions are presented to co-design the event-triggered transmission schemes and the fuzzy filter such that the filtering error system is robustly mean-square exponentially stable with a prescribed H attenuation level. Finally, the improvement in estimation performance and comparison with the existing filtering methods are discussed through simulation examples.  相似文献   

14.
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods.  相似文献   

15.
In this paper, a security consistent tracking control scheme with event-triggered strategy and sensor attacks is developed for a class of nonlinear multi-agent systems. For the sensor attacks on the system, a security measurement preselector and a state observer are introduced to combat the impact of the attacks and achieve secure state estimation. In addition, command filtering technology is introduced to overcome the “complexity explosion” caused by the use of the backstepping approach. Subsequently, a new dynamic event-triggered strategy is proposed, in which the triggering conditions are no longer constants but can be adjusted in real time according to the adaptive variables, so that the designed event-triggered mechanism has stronger online update ability. The measurement states are only transmitted through the network based on event-triggered conditions. The proposed adaptive backstepping algorithm not only ensures the security of the system under sensor attacks but also saves network resources and ensures the consistent tracking performance of multi-agent systems. The boundedness of all closed-loop signals is proved by Lyapunov stability analysis. Simulation examples show the effectiveness of the control scheme.  相似文献   

16.
This paper surveys the identification of observer canonical state space systems affected by colored noise. By means of the filtering technique, a filtering based recursive generalized extended least squares algorithm is proposed for enhancing the parameter identification accuracy. To ease the computational burden, the filtered regressive model is separated into two fictitious sub-models, and then a filtering based two-stage recursive generalized extended least squares algorithm is developed on the basis of the hierarchical identification. The stochastic martingale theory is applied to analyze the convergence of the proposed algorithms. An experimental example is provided to validate the proposed algorithms.  相似文献   

17.
Distributed target tracking is an important problem in sensor networks (SNs). In this paper, the problem of distributed target tracking is addressed under cyber-attacks for targets with discrete-time and continuous-time nonlinear dynamics. Two distributed filters are obtained for every node of the SN to estimate the states of a general class of nonlinear targets which can be seen in many practical applications. Compared with the existing results in the literature, the network topology of the SN is assumed to be subjected to the denial-of-service attack such that the communication links among sensor nodes are paralyzed or destroyed by this kind of attack. Moreover, the proposed algorithms are designed based on an event-triggered communication strategy that means the frequency of information transmission and unnecessary resource consumption are significantly reduced. The presented algorithms’ stability is also analyzed in the presence of noise to achieve secure event-triggered target tracking in mean-square. Two simulation examples are utilized to demonstrate the efficiency of the proposed event-triggered algorithms.  相似文献   

18.
An improved memory-event-triggered control for networked control systems   总被引:1,自引:0,他引:1  
In this paper, the H control problem is investigated for a class of networked control systems with network-induced delay. A memory event-triggered scheme (METS) is proposed to reduce the redundant packet transmission in the network channel. Different from the normal event-triggered scheme (ETS), some recent released packets are stored at the event generator and controller sides, which are utilized for the first time to generate the triggered events and design the memory-based controller. The proposed METS has the following two merits. (1) The information of certain recent released signals are first utilized, which helps to improve the triggering instants at the crest or trough of the responses. (2) A state-dependent time-varying threshold parameter is designed, which can adjust the packet transmission rate according to the information of the state. Based on the proposed METS, a memory event-triggered controller is designed, the controller feedback gains and triggering parameters can be co-designed by solving a set of linear matrix inequalities. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

19.
This paper focuses on the extended dissipative filter design problem for a class of uncertain semi-Markov jump systems in the discrete-time context, where the parameter uncertainties are assumed to be occurred in a special probabilities way. The aim of this paper is to design a mode-dependent filter ensuring the stochastic stability of the resulting filtering error system. To reduce the burden of communication network, the event-triggered scheme and quantized measurement are employed. By constructing a new Lyapunov functional, the filter design methodology is put forward. Finally, two numerical examples are proposed to demonstrate the usefulness of the filter design methodology.  相似文献   

20.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号