首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper concentrates on proposing a novel finite-time tracking control algorithm for a kind of nonlinear systems with input quantization and unknown control directions. The nonlinear functions in the system are approximated by the means of strong approximation capability of the fuzzy logic systems. Firstly, the nonlinear system with unknown control directions is transformed into an equivalent system with known control gains by coordinate transformation. Secondly, the unknown system states are estimated by a designed fuzzy state observer, and the disturbance observer is constructed to track the external disturbances. The command filtering method is proposed to approach the problem of “explosion of complexity” existed in the conventional backstepping design process. In this system, the difficulties caused by unknown control directions are solved via the Nussbaum gain approach. Finally, based on the fuzzy state observer, the controller of the original system is obtained via using the transformed system by the backstepping method. The boundedness of all signals and the convergence of tracking and observer errors at the origin are ensured for the closed-loop system, and demonstrated by the simulation result in this paper.  相似文献   

2.
《Journal of The Franklin Institute》2019,356(17):10564-10575
In this paper, a new event-trigger based probabilistic controller is designed using a scenario optimization approach for the robust stabilization of uncertain systems subject to nonlinear and unbounded uncertainties. Sufficient probabilistic stabilization conditions are derived under which the closed-loop system is ε level robust probabilistic stable. Based on these conditions, the design of the gains of the event-triggered state feedback controller is formulated and solved as an optimization problem involving linear matrix inequality. The applicability of theoretical results obtained is illustrated by a numerical example.  相似文献   

3.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

4.
This paper investigates a robust H controller design for discrete-time polynomial fuzzy systems based on the sum-of-squares (SOS) approach when model uncertainties and external disturbances are simultaneously considered. At the beginning of the controller design procedure, a general discrete-time polynomial fuzzy control system proposed in this paper is used to represent a nonlinear system containing model uncertainties and external disturbances. Subsequently, through use of a nonquadratic Lyapunov function and the H performance index, the novel SOS-based robust H stability conditions are derived to guarantee the stability of the entire control system. By solving those stability conditions, control gains of the robust H polynomial fuzzy controller are obtained. Because the model uncertainties and external disturbances are considered simultaneously in the controller design procedure, the closed-loop control system achieves greater robustness and H performance against model uncertainties and external disturbances. Moreover, the novel operating-domain-based robust H stability conditions are derived by considering the operating domain constraint to relax the conservativeness of solving the stability conditions. Finally, simulation results demonstrated the availability and effectiveness of the proposed stability conditions, which are more general than those used in existing approaches.  相似文献   

5.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

6.
The problem of decentralized adaptive control is investigated for a class of large-scale nonstrict-feedback nonlinear systems subject to dynamic interaction and unmeasurable states, where the dynamic interaction is related to both input and output items. First, the fuzzy logic system is utilized to tackle unknown nonlinear function with nonstrict-feedback structure. Then, by combining adaptive and backstepping technology, the proper output feedback controller is designed. Meanwhile, a fuzzy state observer is proposed to estimate the unmeasurable states. The proposed controller could guarantee that all the signals of the resulting closed-loop systems are bounded. Finally, the applicability of the proposed controller is well carried out by a simulation example.  相似文献   

7.
In this study, an adaptive interval type-2 Takagi-Sugeno-Kang fuzzy logic controller based on reinforcement learning (AIT2-TSK-FLC-RL) is proposed. The proposed controller consists of an actor, a critic and a reward signal. The actor is represented by the IT2-TSK-FLC in which the antecedents and the consequents are interval type-2 fuzzy sets (IT2FSs) and type-1 fuzzy sets (T1FSs), respectively, which are named A2-C1. The critic is represented by a neural network, which approximates the optimal guaranteed cost in the control design to ensure the system stability for all admissible uncertainties and noise. The use of a reward signal to formalize the idea of a goal is one of the most distinctive features of RL. Thus, the proposed controller evolves in time as a result of the online learning algorithm. The parameters of the proposed controller are learned online based on the Lyapunov theorem to guarantee the stability, overcome the shortcomings of the gradient descent, such as the local minima and instability, and determine the learning rate of the IT2-TSK-FLC controller. Furthermore, the critic stability is discussed for determining the optimal learning rate. The proposed controller is applied to uncertain nonlinear systems to show its robustness in reducing the effect of system uncertainties and external disturbances and is compared to other controllers.  相似文献   

8.
In the presence of system uncertainties, external disturbances and input nonlinearity, this paper is concerned with the adaptive terminal sliding mode controller to achieve synchronization between two identical attractors which belong to a class of second-order chaotic system. The proposed controller with adaptive feedback gains can compensate nonlinear dynamics of the synchronous error system without calculating the magnitudes of them. Meanwhile, these feedback gains are updated by the novel adaptive rules without required that the bounds of system uncertainties and external disturbances have to be known in advance. Some sufficient conditions for stability are provided based on the Lyapunov theorem and numerical studies are performed to verify the effectiveness of presented scheme.  相似文献   

9.
In this paper, an observer-based adaptive control problem for a class of high-order switched nonlinear systems in non-strict feedback form with fuzzy dead zone and arbitrary switchings is investigated. Fuzzy logic system was utilized to model the unknown nonlinear function with the universal approximation ability. An adaptive high-order observer is constructed to estimate unavailable state variables. The effect of dead zone can be eliminated by a Nussbaum function. By using the Lyapunov stability theory and backstepping design procedure, the proposed adaptive controller can guarantee all the variables in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB). Simulation results are exhibited to demonstrate the effectiveness of the proposed control scheme.  相似文献   

10.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

11.
This paper addresses the interval type-2 fuzzy robust dynamic output-feedback control problem for a class of nonlinear continuous-time systems with parametric uncertainties and immeasurable premise variables. First, the parametric uncertainties are assumed to be a subsystem based on the control input matrix and output matrix, and described as a linear fractional. Secondly, the nonlinear continuous-time systems are described by the interval type-2 fuzzy model. Thirdly, the new dynamic output feedback controller is designed based on the interval type-2 fuzzy model and the linear fractional (parametric uncertainties), the sufficient conditions for robust stabilization are given in the form of linear matrix inequalities (LMIs). Compared with previous work, the developed methods not only have abilities to handle the fuzzy system with immeasurable premise variables but also can deal with the parametric uncertainties effectively. The results are further extended to a mobile robot case and a chemical process case. Finally, two simulation examples are performed to show the effectiveness of the propose methods.  相似文献   

12.
In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are taken by IT2 membership functions distinguish by the lower and upper membership functions. The main objective of this paper is to design a resilient memory sampled-data controller such that the resulting closed-loop system is finite-time bounded and satisfies extended dissipative performance. Moreover, the solvability of the derived conditions not only depends on the size of the delay but also on the probabilistic distribution of the delay taking values in some interval, thus probabilistic delay protocol is encountered in the IT2 fuzzy model. By employing suitable Lyapunov-Krasovskii functional (LKF) along with Wirtinger-based inequality, a set of sufficient conditions ensuring the finite-time extended dissipative performance for IT2 fuzzy systems are derived in terms of linear matrix inequalities (LMIs). Finally, two numerical simulations are presented to reveal the effectiveness of the developed technique.  相似文献   

13.
This paper considers the distributed adaptive fault-tolerant control problem for linear multi-agent systems with matched unknown nonlinear functions and actuator bias faults. By using fuzzy logic systems to approximate the unknown nonlinear function and constructing a local observer to estimate the states, an effective distributed adaptive fault-tolerant controller is developed. Furthermore, different from the traditional method to estimate the weight matrix, only the weight vector needs to be estimated by exchanging the order of weight vectors and fuzzy basis functions in the fuzzy logic systems. In contrast to the existing results, the assumption that the dimensions of input vector and output vector are equal is removed. In addition, it is proved that the proposed control protocol guarantees all signals in the closed-loop systems are bounded and all agents converge to the leader with bounded residual errors. Finally, simulation examples are given to illustrate the effectiveness of the proposed method.  相似文献   

14.
A new and systematic method to design digital controllers for uncertain chaotic systems with structured uncertainties is presented in this paper. Takagi-Sugeno (TS) fuzzy model is used to model the chaotic dynamic system, while the uncertainties are decomposed such that the uncertain chaotic system can be rewritten as a set of local linear models with an additional disturbed input. Conventional control techniques are utilized to develop the continuous-time controllers first. Then, the digital controllers are obtained as the digital redesign of the continuous-time controllers using the state-matching approach. The performance of the proposed controller design is illustrated through numerical examples.  相似文献   

15.
The main idea of the original parallel distributed compensation (PDC) method is to partition the dynamics of a nonlinear system into a number of linear subsystems, design a number of state feedback gains for each linear subsystem, and finally generate the overall state feedback gain by fuzzy blending of such gains. A new modification to the original PDC method is proposed here, so that, besides the stability issue, the closed-loop performance of the system can be considered at the design stage. For this purpose, the state feedback gains are not considered constant through the linearized subsystems, rather, based on some prescribed performance criteria, several feedback gains are associated to every subsystem, and the final gain for every subsystem is obtained by fuzzy blending of such gains. The advantage is that, for example, a faster response can be obtained, for a given bound on the control input. Asymptotic stability of the closed loop system is also guaranteed by using the Lyapunov method. To illustrate the effectiveness of the new method, control of a flexible joint robot (FJR) is investigated and superiority of the designed controller over other existing methods is demonstrated.  相似文献   

16.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

17.
In this paper, an adaptive Takagi–Sugeno (T–S) fuzzy controller based on reinforcement learning for controlling the nonlinear dynamical systems is proposed. The parameters of the T–S fuzzy system are learned using the reinforcement learning based on the actor-critic method. This on-line learning algorithm improves the controller performance over the time, which it learns from its own faults through the reinforcement signal from the external environment and tries to reinforce the T–S fuzzy system parameters to converge. The updating parameters are developed using the Lyapunov stability criterion. The proposed controller is faster in learning than the T–S fuzzy that parameters learned using the gradient descent method under the same conditions. Moreover, it is able to handle the load changes and the system uncertainties. The test is carried out based on two mathematical models. In addition, the proposed controller is applied practically for controlling a direct current (DC) shunt machine. The results indicate that the response of the proposed controller has a good performance compared with other controllers.  相似文献   

18.
This study presents a new framework for merging the Adaptive Fuzzy Sliding-Mode Control (AFSMC) with an off-policy Reinforcement Learning (RL) algorithm to control nonlinear under-actuated agents. In particular, a near-optimal leader-follower consensus is considered, and a new method is proposed using the framework of graphical games. In the proposed technique, the sliding variables’ coefficients are considered adaptively tuned policies to achieve an optimal compromise between the satisfactory tracking performance and the allowable control efforts. Contrary to the conventional off-policy RL algorithms for consensus control of multi-agent systems, the proposed method does not require partial knowledge of the system dynamics to initialize the RL process. Furthermore, an actor-critic fuzzy methodology is employed to approximate optimal policies using the measured input/output data. Therefore, using the tuned sliding vector, the control input for each agent is generated which includes a fuzzy term, a robust term, and a saturation compensating term. In particular, the fuzzy system approximates a nonlinear function, and the robust part of the input compensates for any possible mismatches. Furthermore, the saturation compensating gain prevents instability due to any possible actuator saturation. Based on the local sliding variables, the fuzzy singletons, the bounds of the approximation errors, and the compensating gains are adaptively tuned. Closed-loop asymptotic stability is proved using the second Lyapunov theorem and Barbalat's lemma. The method's efficacy is verified by consensus control of multiple REMUS AUVs in the vertical plane.  相似文献   

19.
Takagi-Sugeno (T-S) fuzzy models can provide an effective representation of complex nonlinear systems with a series of linear input/output submodels in terms of fuzzy sets and fuzzy reasoning. In this paper, the T-S fuzzy model approach is extended to the stability analysis and controller design for nonlinear systems with time delays. An improved stability condition is proposed by introducing adjustable parameters into the Lyapunov-Krasovskii functional. Stabilization approach for fuzzy state feedback is also presented. Sufficient conditions for the existence of fuzzy feedback gain are derived through the numerical solution of a set of obtained linear matrix inequalities (LMIs). Compared with the existing methods in the literature, the proposed approach has less conservatism and both the sizes of delay and its derivative are involved in the criterion. The dynamical performance of the system can be adjusted by changing the adjustable parameters. Finally, two examples are given to show the effectiveness of the proposed approach.  相似文献   

20.
This paper aims at the sampled-data control problem for a class of pure-feedback nonlinear systems. A fuzzy state observer is constructed to evaluate the unavailable states. In this process, fuzzy logic systems are applied to approximate the uncertain nonlinear functions. Based on the new designed state observer, a sampled-data control scheme for the pure-feedback nonlinear systems is proposed. The designed sampled-data controller ensures the boundedness of the nonlinear systems. Finally, two numerical examples are used to demonstrate that the proposed method is efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号