首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

2.
In this paper, we study the robust cooperative output regulation problem of heterogeneous linear multi-agent systems with system uncertainties and directed communication topology. A robust distributed event-triggered control scheme is proposed based on the internal model principle. To avoid continuous monitoring of measurement errors for the event-triggering condition, a novel self-triggered control scheme is further proposed. Moreover, by introducing a fixed timer in the triggering mechanisms, Zeno behavior can be excluded for each agent. An example is finally provided to demonstrate the effectiveness of the proposed self-triggered control scheme.  相似文献   

3.
This paper addresses the problem of bipartite output consensus of heterogeneous multi-agent systems over signed graphs. First, under the assumption that the sub-graph describing the communication topology among the agents is connected, a fully distributed protocol is provided to make the heterogeneous agents achieve bipartite output consensus. Then for the case that the topology graph has a directed spanning tree, a novel adaptive consensus protocol is designed, which also avoids using any global information. Each of these two protocols consists of a solution pair of the regulation equation and a homogeneous compensator. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

4.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

5.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

6.
7.
This paper addresses L2 observer-based fault detection issues for a class of nonlinear systems in the presence of parametric and dynamic uncertainties, respectively. To this end, three different types of uncertain affine nonlinear system models studied in this paper are described first. Then, the integrated design schemes of L2 observer-based fault detection systems are derived with the aid of Hamilton–Jacobi inequalities (HJIs), respectively. Numerical examples are also provided in the end to demonstrate the effectiveness of the proposed results.  相似文献   

8.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

9.
In this paper, we first consider the containment control problem of singular heterogeneous multi-agent systems, where all the followers converge to the convex hull spanned by the leaders. To solve this problem, we propose two distributed control laws: one is based on the state feedback control framework, which is suitable for the case that the full state information of each follower is accessible; and the other is based on the output regulation framework, where each follower only can access to its output. Furthermore, the distributed observers are designed for every follower to estimate the convex combination of the leader states which is determined by the communication graph. It should be noted that our results can also regard the non-singular multi-agent systems’ containment control problem as a special case. Finally, simulation results corroborate the effectiveness of our analytical results.  相似文献   

10.
This paper mainly investigates the event-triggered tracking control for couple-group multi-agent systems in a disturbance environment, where the topology of the agents is switching. Consensus protocol is designed for the case that some agents reach a consistent value, while the other agents reach another consistent value. Then, event-triggered control laws are designed to reduce the frequency of individual actuation updating for discrete-time agent dynamics. Moreover, by applying the Lyapunov function method, a sufficient condition of couple-group consensus is established in terms of a matrix inequality when the communication topology is switching. Finally, simulation examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

11.
In this paper, we apply iterative learning control to both linear and nonlinear fractional-order multi-agent systems to solve consensus tacking problem. Both fixed and iteration-varying communicating graphs are addressed in this paper. For linear systems, a PDα-type update law with initial state learning mechanism is introduced by virtue of the memory property of fractional-order derivative. For nonlinear systems, a Dα-type update law with forgetting factor and initial state learning is designed. Sufficient conditions for both linear and nonlinear systems are established to guarantee all agents achieving the asymptotic output consensus. Simulation examples are provided to verify the proposed schemes.  相似文献   

12.
This paper investigates the event-triggered containment control for a class of second-order nonlinear multi-agent systems. A centralized event-triggered protocol is first designed, then the result is extended to the decentralized counterpart. By the tools from nonsmooth analysis, it is shown that the containment control objective can be achieved via the presented protocols. To avoid the Zeno behavior, the event-triggered conditions are redesigned. It is proven that all followers can asymptotically converge to the convex hull spanned by multiple leaders via the proposed strategies and the Zeno behavior can be excluded, simultaneously. Two examples are given to illustrate the feasibility of the proposed protocols.  相似文献   

13.
This paper investigates the problem of observer-based decentralized control for a class of large-scale stochastic high-order feedforward systems with multi time delays. By using the homogeneous domination idea and constructing the implementable observer, the decentralized output-feedback controller design scheme is firstly proposed. Then, with the aid of stochastic time delay system stability theory, the globally asymptotically stable in probability of the closed-loop system is verified by selecting an appropriate Lyapunov–Krasoviskii functional. Finally, an example is provided to demonstrate the efficiency of the proposed design method.  相似文献   

14.
This paper is concerned with the observer-based H control for a class of singular Markov jump systems over a finite-time interval, where the transition probability (TP) is time-varying and is limited to a convex hull. Due to the limited capacity of network medium, packet losses are presented in the underlying systems. Firstly, using a stochastic Lyapunov functional, a sufficient condition on singular stochastic H finite-time boundedness for the corresponding closed-loop error systems is provided. Subsequently, a linear matrix inequality (LMI) condition on the existence of the H observer-based controller is developed from a new perspective. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed controller design method, wherein it is shown that the proposed method yields less conservative results than those in the literature.  相似文献   

15.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

16.
This paper addresses the mean-square consensus problems of continuous-time heterogeneous multi-agent systems with communication noises. First, in order to attenuate the communication noises, time-varying consensus gains are applied in the consensus algorithm. Then, by using the tools of algebraic graph theory and stochastic analysis, sufficient conditions for the mean-square consensus are given for the cases with and without a leader. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

17.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

18.
This paper investigates the adaptive fuzzy control design problem of multi-input and multi-output (MIMO) non-strict feedback nonlinear systems. The considered control systems contain unknown control directions and dead zones. Fuzzy logic systems (FLSs) are utilized to approximate the unknown nonlinear functions, and the state observers are designed to estimate immeasurable states. By constructing a dead zone compensator and introducing a Nussbaum gain function into the backstepping technique, an adaptive fuzzy output feedback control method is developed. The proposed adaptive fuzzy controller is proved to guarantee the semi-globally uniformly ultimately bounded (SGUUB) of the closed-loop system, and can solve the control design problems of unmeasured states, unknown control directions and dead zones. The simulation results are given to demonstrate the effectiveness of the proposed control method.  相似文献   

19.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

20.
In this paper, the finite-time exponential consensus problem is addressed for a class of multi-agent systems against some disturbed factors, which include system uncertainties, communication perturbations, and actuator faults. All disturbed factors are supposed to be influenced by internal and external effects of systems. The internal effects are described in terms of dependency on the system states, while the external actions are restricted by constant bounds. To obtain the information of the rate of dependency on the states and constant bounds, an adaptive mechanism is designed to estimate the rate and bounds. Based on these estimates, a distributed adaptive sliding mode controller is constructed to eliminate the effects of those disturbed factors. Then exponential consensus of the closed-loop adaptive multi-agent system is achieved within a finite time based on Lyapunov stability theory. The efficiency of the developed adaptive consensus control strategy is verified by a coupled system with four F-18 aircrafts of decoupled longitudinal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号