首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the students’ level of word knowledge manifested in their talk. In this framework, highly developed knowledge of a word is conceptual knowledge. This includes understanding how the word is situated within a network of other words and ideas. The results suggest that students’ level of word knowledge develops toward conceptual knowledge when the students are required to apply the key concepts in their talk throughout all phases of inquiry. When the students become familiar with the key concepts through the initial inquiry activities, the students use the concepts as tools for furthering their conceptual understanding when they discuss their ideas and findings. However, conceptual understanding is not promoted when teachers do the talking for the students, rephrasing their responses into the correct answer or neglecting to address the students’ everyday perceptions of scientific phenomena.  相似文献   

2.

Constructing scientific arguments is an important practice for students because it helps them to make sense of data using scientific knowledge and within the conceptual and experimental boundaries of an investigation. In this study, we used a text mining method called Latent Dirichlet Allocation (LDA) to identify underlying patterns in students written scientific arguments about a complex scientific phenomenon called Albedo Effect. We further examined how identified patterns compare to existing frameworks related to explaining evidence to support claims and attributing sources of uncertainty. LDA was applied to electronically stored arguments written by 2472 students and concerning how decreases in sea ice affect global temperatures. The results indicated that each content topic identified in the explanations by the LDA— “data only,” “reasoning only,” “data and reasoning combined,” “wrong reasoning types,” and “restatement of the claim”—could be interpreted using the claim–evidence–reasoning framework. Similarly, each topic identified in the students’ uncertainty attributions— “self-evaluations,” “personal sources related to knowledge and experience,” and “scientific sources related to reasoning and data”—could be interpreted using the taxonomy of uncertainty attribution. These results indicate that LDA can serve as a tool for content analysis that can discover semantic patterns in students’ scientific argumentation in particular science domains and facilitate teachers’ providing help to students.

  相似文献   

3.
Classroom discussions have become a centerpiece of reform efforts in science education because talk mediates the joint co-constructing of knowledge in science classrooms. Although decades of research underscore the importance of talk in supporting science learning, the science education community continues to grapple with how to support teachers and students in navigating the uncertainty that is associated with doing knowledge building work. To address these challenges, we must examine not just what gets constructed (the scientific ideas), but how knowledge is co-constructed by teachers and students (the process of building those ideas) amidst uncertainty. In this study, we propose a conceptual tool for identifying organizational, epistemic, and interpretive metadiscourse markers (MDMs) in science talk. We highlight how teachers and students use these three types of MDMs as they navigate uncertainty while connecting ideas within and across multiple turns of talk, leveraging resources for knowledge building, and making interpretations about one another's ideas. We conclude with a set of suggestions for how researchers and teachers can utilize this framework to attend to the ways that MDMs index the organizational, epistemic, and interpretive dimensions of uncertainty in the knowledge building process.  相似文献   

4.
Researchers have shown a growing interest in science teachers’ professional knowledge in recent decades. The article focuses on how chemistry teachers impart chemical bonding, one of the most important topics covered in upper secondary school chemistry courses. Chemical bonding is primarily taught using models, which are key for understanding science. However, many studies have determined that the use of models in science education can contribute to students’ difficulties understanding the topic, and that students generally find chemical bonding a challenging topic. The aim of this study is to investigate teachers’ knowledge of teaching chemical bonding. The study focuses on three essential components of pedagogical content knowledge (PCK): (1) the students’ understanding, (2) representations, and (3) instructional strategies. We analyzed lesson plans about chemical bonding generated by 10 chemistry teachers with whom we also conducted semi-structured interviews about their teaching. Our results revealed that the teachers were generally unaware of how the representations of models they used affected student comprehension. The teachers had trouble specifying students’ difficulties in understanding. Moreover, most of the instructional strategies described were generic and insufficient for promoting student understanding. Additionally, the teachers’ rationale for choosing a specific representation or activity was seldom directed at addressing students’ understanding. Our results indicate that both PCK components require improvement, and suggest that the two components should be connected. Implications for the professional development of pre-service and in-service teachers are discussed.  相似文献   

5.
In physics teacher education, two central goals are first to learn the structures of physics knowledge, and second the processes of its construction. To know the structure is to know the framework of concepts and laws; to know the processes is to know where the knowledge comes from, how the framework is constructed, and how it can be justified. This article introduces a way to approach these goals in the form of a graphical tool called the didactical reconstruction of processes (DRP), where knowledge is constructed to the extent that experiments and models have an equally important role in the construction process. In practice, the DRP is a graphical network representation or a ??flow chart?? with a specific structure, which aims to give an image of the processes of physical concept formation, while at the same time bearing in mind the educational goals. The DRP was tested in an instruction unit for pre-service physics teachers, where students drew flow charts for representing how the law of electromagnetic induction is formed. In addition to flow charts, students also wrote essays clarifying the content of the flow charts. The flow charts and essays were analysed through a qualitative categorisation of structural and knowledge claim patterns. The results show that the DRP helps students in arguing how to form the electromagnetic induction law and that the experiments and models have a distinct role in supporting students?? knowledge claims.  相似文献   

6.
This paper presents a transformative modeling framework that guides the development of assessment to measure students’ deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating multiple explanatory models, and (3) connecting scientific models to concrete experiences. We carried out a 2-phase exploratory study that helped further develop and refine the framework. In the first phase, we developed 3 items on sinking and floating and pilot tested them with 18 undergraduate students. Analysis of student responses revealed various student misconceptions and the different connections students made among science ideas. Based on the findings, we revised the assessment, modified the instruction, and collected data from another cohort of 26 students. The second cohort of students showed significant improvement of understanding of sinking and floating after instruction. Implications and limitations of how our assessment framework can be used to improve students’ conceptual understanding in science are discussed.  相似文献   

7.
In recent years, there has been a strong push to transform STEM education at K-12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate-of-change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.  相似文献   

8.
科学写作是将学生的科学理解和科学思维过程具体化为外在表征的过程,对学生的科学学习具有重要价值。知识转换模型作为解释学生科学写作心理过程的理论框架,有效揭示了写作促进学生学习的认知过程。与知识陈述模型相比,基于知识转换模型的科学写作更有助于促进学生生成与建构新知识,凸显学生的科学思维和科学理解。基于知识转换模型的科学写作需要教师明确科学写作目的,以合作者身份参与学生写作;引导学生设定科学写作目标,形成任务的心理表征;指导学生在科学写作的体裁与功能之间建立联系,激活问题空间;为学生设计多样化的作品读者,推动知识转换的进程;重视对学生科学写作过程的评价。  相似文献   

9.
In scientific literacy, knowledge integration (KI) is a scaffolding-based theory to assist students' scientific inquiry learning. To drive students to be self-directed, many courses have been developed based on KI framework. However, few efforts have been made to evaluate the outcome of students' learning under KI instruction. Moreover, finer-grained information has been pursued to better understand students' learning and how it progresses over time. In this article, a normative procedure of building and choosing cognitive diagnosis models (CDMs) and attribute hierarchies was formulated under KI theory. We examined the utility of CDMs for evaluating students' knowledge status in KI learning. The results of the data analysis confirmed an intuitive assumption of the hierarchical structure of KI components. Furthermore, analysis of pre- and posttests using a higher-order, hidden Markov model tracked students' skill acquisition while integrating knowledge. Results showed that students make significant progress after using the web-based inquiry science environment (WISE) platform.  相似文献   

10.
Understanding how well teachers integrate digital technology in learning is the subject of considerable debate in education. High Possibility Classrooms (HPC) is a pedagogical framework drawn from research on exemplary teachers’ knowledge of technology integration in Australian school classrooms. The framework is being used to support teachers who teach various stages of schooling to take ‘pedagogical steps’ in their practice with technology. This article focuses on the use of the HPC conceptual framework in a study of seven teachers and their students at two secondary schools in New South Wales, Australia. Analysis confirms the practicality of this conceptual framework for technology integration in secondary school classrooms. This inquiry has implications for addressing the reluctance of teachers to integrate technology in curriculum. The article concludes by suggesting that more schools might consider using conceptual frameworks like HPC to support secondary school teachers to enhance student learning with technology.  相似文献   

11.
《科学教学研究杂志》2017,54(9):1121-1142
While the majority of published research on conceptual change has focused on how misconceptions can be abandoned or modified, some recent research findings support the hypothesis that acquired scientific knowledge does not necessarily erase or alter initial non‐scientific knowledge but rather coexists with it. In keeping with this “coexistence claim,” this article presents an analysis of scientific understanding in four groups of individuals with varying degrees of expertise (preschoolers, elementary students, secondary students, and science teachers) using a cognitive task on buoyancy. This task allowed us to determine the prevalence of certain conceptions and the interference caused by two possible conceptual distractors with regard to producing accurate answers. Results describe the progression of the desired (scientific) conception with age/expertise as well as the evolution or regression of the statuses of two misconceptions. Results also show that misconceptions continue to interfere with performance even when there is a higher degree of scientific expertise, and that patterns of such interference can be studied. In keeping with these conclusions, we argue for the use of a model of conceptual learning called “conceptual prevalence.” © 2017 The Authors. Journal of Research in Science Teaching Published by Wiley Periodicals, Inc. J Res Sci Teach 54:1121–1142, 2017
  相似文献   

12.
Modelling is the essence of thinking and working scientifically. But how do secondary students view science models? Usually as toys or miniatures of real-life objects with few students actually understanding why scientists use multiple models to explain concepts. A conceptual typology of models is presented and explained to help teachers select models that are appropriate to the conceptual ability of their students. The article concludes by recommending that teachers model scientific modelling to their students, encourage the use of multiple models in science lessons, progressively introduce sophisticated models, systematically present in-class models using the Focus, Action and Reflection (FAR) guide and socially negotiate all model meanings.  相似文献   

13.
This research introduces a method to construct a unified representation of teachers and students perspectives based on the actionable knowledge discovery (AKD) and delivery framework. The representation is constructed using two models: one obtained from student evaluations and the other obtained from teachers’ reflections about their teaching practice. We integrate both models into one that incorporates students’ opinions and teachers’ knowledge and meta-knowledge. This method provides a representation of a teacher’s best teaching practices where student perceptions are presented as patterns in the form of association rules. The representation adds actionability to association rules by demonstrating how students’ association rules are related between themselves and how they are related to teacher’s meta-knowledge.  相似文献   

14.
The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students’ understandings of the discussed aspects of nature of scientific knowledge.  相似文献   

15.
Teachers’ knowledge and application of model play an important role in students’ development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers’ knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The result indicated as follows: (1) Chemistry teachers’ knowledge of some known chemistry models was limited; (2) Chemistry teachers preferred those models that were vivid when they chose models; (3) Teachers’ modeling process was incomplete; (4) Teachers adopted a general pattern when applying models in chemistry teaching. The findings have implications for teacher education.  相似文献   

16.
This paper develops a conceptual basis for a model on the teaching of socio‐scientific controversial issues for secondary or high school students. I argue that the teaching of controversial issues needs a stronger theoretical base. Drawing on a liberal democratic conception of possible sources of conflict, three strands are developed that provide a framework for teachers when teaching socio‐scientific issues: these are categories of reasonable disagreement, the communicative virtues, and modes of thought. Examples are given to illustrate how the framework can be used by teachers in which the features of controversy are made explicit to students.  相似文献   

17.
We expect our students to learn different ways of thinking, such as historical empathy or scientific reasoning, reflection, critical analysis, or clinical reasoning. But how do we discern if they have learned these ways of thinking when thinking is often abstract, tacit and seemingly invisible? In this conceptual and theoretical article, I argue that we can discern any kind of thinking, however we define it, if we focus on the observable actions or thinking behaviours associated with that thinking. Based on this argument, I then offer a theoretical framework for teachers so they might recognise and informally assess the particular kind of student thinking they want to cultivate. This framework synthesises several important theories about how we learn to think, and distinguishes six general features a teacher might look for to be more discerning about any kind of thinking: visibility, complexity, frequency, flexibility, independence, and application of the thinking behaviours.  相似文献   

18.
This article discusses how to deal with the relations between different cultural perspectives in classrooms, based on a proposal for considering understanding and knowledge as goals of science education, inspired by Dewey’s naturalistic humanism. It thus combines educational and philosophical interests. In educational terms, our concerns relate to how science teachers position themselves in multicultural classrooms. In philosophical terms, we are interested in discussing the relations between belief, understanding, and knowledge under the light of Dewey’s philosophy. We present a synthesis of Dewey’s theory of inquiry through his naturalistic humanism and discuss its implications for the concepts of belief, understanding, and knowledge, as well as for the goals of science teaching. In particular, we highlight problems arising in the context of possible conflicts between scientific and religious claims in the school environment that result from totalitarian positions. We characterize an individual’s position as totalitarian if he or she takes some way of thinking as the only one capable of expressing the truth about all that exists in the world, lacks open-mindedness to understand different interpretative perspectives, and attempts to impose her or his interpretation about the facts to others by violent means or not. From this stance, any other perspective is taken to be false a priori and, accordingly, as a putative target to be suppressed or adapted to the privileged way of thinking. We argue, instead, for a more fallibilist evaluation of our own beliefs and a more respectful appraisal of the diversity of students’ beliefs by both students and teachers.  相似文献   

19.
Historical excurse was suggested as a beneficial form of using the history and philosophy of science in the modules of learning materials developed within the History and Philosophy in Science Teaching project. The paper briefly describes the theoretical framework of the produced modules, addressing ontological and epistemological aspects of historical changes in physics knowledge with regard to several particular concepts relevant to school course of physics. It is argued that such excurses create Cultural Content Knowledge which improves the Pedagogical Content Knowledge in teachers and are appropriate to facilitate the meaningful learning by students. The modules illustrate the new aspect of the scientific knowledge not sufficiently addressed in the current science educational discourse??the constructive diachronic discourse that took place in the history. Historical excurse makes explicit the paradigmatic conceptual changes in physics knowledge and thus creates the space of learning in which the ??correct?? knowledge (type I) emerges in a discourse with the alternates (type II knowledge). Some of the previous conceptions show certain similarity to students?? misconceptions which further motivates essential use of both types of scientific knowledge to support the meaningful learning of physics curriculum. The epistemological aspects of the developed materials illuminate the nature of scientific knowledge and its major features: objectiveness and cumulative nature. Teachers found the developed modules interesting, important but challenging their background and requiring special preparation.  相似文献   

20.
We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students’ science ideas and restate these ideas in scientific terms. Based on this research, we inferred that analyzing children’s ideas through videos provides a meaningful context for applying conceptual physics knowledge in physics courses. Activities that are embedded within a disciplinary curriculum, such as those studied here, may help prospective teachers learn to use disciplinary knowledge in exactly the type of activity in which their content knowledge will be most useful: listening to and interpreting children’s science ideas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号