首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our short-term longitudinal study explored undergraduate students' experiences with performing authentic science practices in the classroom in relation to their science achievement and course grades. In addition, classroom experiences (felt recognition as a scientist and perceived classroom climate) and changes over a 10-week academic term in STEM (science, technology, engineering, and mathematics) identity and motivation were tested as mediators. The sample comprised 1,079 undergraduate students from introductory biology classrooms (65.4% women, 37.6% Asian, 30.2% White, 25.1% Latinx). Using structural equation modeling (SEM), our hypothesized model was confirmed while controlling for class size and GPA. Performing science practices (e.g., hypothesizing or explaining results) positively predicted students' felt recognition as a scientist; and felt recognition positively predicted perceived classroom climate. In turn, felt recognition and classroom climate predicted increases over time in students' STEM motivation (expectancy-value beliefs), STEM identity, and STEM career aspirations. Finally, these factors predicted students' course grade. Both recognition as a scientist and positive classroom climate were more strongly related to outcomes among underrepresented minority (URM) students. Findings have implications for why large-format courses that emphasize opportunities for students to learn science practices are related to positive STEM outcomes, as well as why they may prove especially helpful for URM students. Practical implications include the importance of recognition as a scientist from professors, teaching assistants, and classmates in addition to curriculum that engages students in the authentic practices of science.  相似文献   

2.
There is a need to identify students' early attitudes toward mathematics and science to better support their long-term persistence in science, technology, engineering, and mathematics (STEM) careers. Seventh graders from a nationally representative sample (N = 2,861) were classified based on their responses to questions about their attitudes toward mathematics and science using latent class analysis. Four distinct groups of students that differed in terms of their attitudes were identified. There were relationships between attitudinal group membership, demographic characteristics, mathematics and science achievement, and STEM career attainment. Females and underrepresented minorities were more likely to be in the positive attitude group. However, despite these early positive attitudes, females and underrepresented minorities were less likely to be employed in a STEM career some 20 years later. Information about student interests organized in this manner can be used to better target specific interventions to support and encourage persistence in STEM careers.  相似文献   

3.
Can engaging college students in client-centered projects in science, technology, engineering, and mathematics (STEM) coursework increase interest in STEM professions? The current study explored the effectiveness of project-based learning (PjBL) courses on student attitudes, major choice, and career aspirations in STEM. Framed in expectancy-value and social cognitive career choice models, we examined the effect of engaging in at least one authentic, project-based course during the first four semesters of college on student STEM attitudes and career aspirations in a quasi-experimental study with a sample of (N = 492) natural science and engineering students. STEM self-efficacy and subjective task value variables (STEM attainment, intrinsic and utility value of STEM courses, and relative cost associated with engaging in STEM courses) were examined as mediators of the relationship between classroom project-based experiences and STEM career aspirations. Gender and underrepresented minority status were also examined. We found that engaging in at least one project-based course during the first four semesters affected student perceptions of STEM skills, perceptions of the utility value of participating in STEM courses, and STEM career aspirations. Furthermore, we found that the effect of project-based courses on STEM career aspirations was mediated by STEM skills and perceptions of course utility. The effect of PjBL was not moderated by race or gender. We highlight areas of future research and the promise of PjBL for engaging students in STEM professions.  相似文献   

4.

Research suggests that the likelihood of students entering into science, technology, engineering, and mathematics (STEM) careers can be increased by promoting and maintaining students’ interest in STEM during middle school years, a critical developmental stage when students’ interests begin to solidify. One way to attract students to STEM is through technology-enhanced learning environments and experiences, which can spark and cultivate the long-term interest needed to pursue STEM careers. Virtual reality (VR) can potentially increase access to such STEM-related experiences for all students due to its educational and technological affordances. Currently, there has been little exploration of the intersection between VR and career development for K-12 students. This study, therefore, aims to address this gap by exploring the use of VR 360 videos for STEM career exploration. Data were collected using focus group interviews with 39 primarily Latinx middle school students who participated in the summer enrichment program. These interviews were conducted immediately after a VR 360 video activity that featured female characters and/or characters from racial minorities in order to best support students who are underrepresented in STEM fields. The findings support the potential of VR as a tool for career development as long as content, possible physical side effects, and scaffolding are considered. The implications for research and practice are discussed.

  相似文献   

5.
This exploratory study examines the impact of a collaborative inquiry- and design-based afterschool program on urban high school students’ IT/STEM learning—using information technology (IT) within the context of science, technology, engineering, and mathematics (STEM). The study used a mixed methods design, involving 77 participants within two cohort groups, each participating in an eighteen-month intervention period. Data were collected from the pre- and post-surveys, analysis of the participants’ IT/STEM projects, external evaluation reports, and follow-up interviews. Findings indicate that the program had a significant impact on students’ technology and IT/STEM skills, frequency of technology use, and understanding of IT use in STEM-oriented fields. Some degree of impact on attitude changes toward IT/STEM and career aspirations in these fields was also in evidence. The study demonstrates that IT/STEM experiences supported through technology-enhanced, inquiry- and design-based collaborative learning strategies have significant impact on urban high school students’ IT/STEM learning. Effect of afterschool programs on attitude changes and IT/STEM-related career aspirations of urban high school students are recommended areas of further investigation.  相似文献   

6.
We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre–post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.  相似文献   

7.
ABSTRACT

The purpose of this study was to answer the following two questions: (1) Do significant differences exist in high-school learning experience, interests, self-efficacy, and career aspirations between male and female science, technology, engineering, and mathematics (STEM) students? (2) Can high-school learning experiences, interests, and self-efficacy significantly predict career aspirations, and do differences exist between male and female STEM students? This study highlighted the gender gap between male and female university students who had already chosen STEM majors with similar academic ability. A total of 407 first-year students were surveyed at a 4-year research university in Taiwan. For the data analysis, a t-test and multiple regression analysis were used, and the findings indicated that male STEM students had greater family support than their female counterparts. The variable of task value could significantly predict STEM career aspirations for both male and female students, whereas the variable of STEM course self-efficacy could only significantly predict that of male students. In conclusion, the findings highlighted that the motivation of task value was a vital factor for predicting STEM career aspirations, whereas the factor of family support was the main gap between male and female STEM students in terms of their high-school learning experiences.  相似文献   

8.
The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most “gatekeeper” chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap.  相似文献   

9.
It is widely acknowledged that our public schools have failed to produce sufficient levels of high quality STEM education. The mathematics and science performance of minority and disadvantaged students has been especially troubling with blacks and Hispanics substantially underrepresented in the STEM labor market. In this paper we examine the impacts of a STEM enhancement program called Nurture thru Nature (NtN) on the cognitive (academic grades) and soft skills development of 139 elementary school students who attended the program over an eight year period (2010–2017). Utilizing a randomized experimental design or RCT with a control group of 491 elementary school students, we find that NtN slows the deterioration in students’ math and science grades relative to controls and improves soft skills such as conscientiousness, higher order thinking, empathy, and pro-social behavior.  相似文献   

10.
This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor’s Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to stimulate students’ interests in science, technology, engineering, and mathematics (STEM) career pathways and learning opportunities among high schools in underserved communities of the City of Detroit. Pre- and post-surveys demonstrated that the MYTC students showed growth in nearly every area covered in the surveys, including dispositions about STEM career and learning. A STEM career goal measure showed that overall interest in having a career in STEM increased 9 % throughout the program, with an additional 10 % for those who participated in an internship experience, the capstone of the MYTC project.  相似文献   

11.
In the United States, less than half of the students who enter into science, technology, engineering, and mathematics (STEM) undergraduate curricula as freshmen will actually graduate with a STEM degree. There is even greater disparity in the national STEM graduation rates of students from underrepresented groups with approximately three-fourths of minority students leaving STEM disciplines at the undergraduate level. A host of programs have been designed and implemented to model best practices in retaining students in STEM disciplines. The Howard Hughes Medical Institute (HHMI) Professors Program at Louisiana State University, under leadership of HHMI Professor Isiah M. Warner, represents one of these programs and reports on a mentoring model that addresses the key factors that impact STEM student attrition at the undergraduate level. By integrating mentoring and strategic academic interventions into a structured research program, an innovative model has been developed to guide STEM undergraduate majors in adopting the metacognitive strategies that allow them to excel in their programs of study, as they learn to appreciate and understand science more completely. Comparisons of the persistence of participants and nonparticipants in STEM curricular, at the host university and with other national universities and colleges, show the impact of the model’s salient features on improving STEM retention through graduation for all students, particularly those from underrepresented groups.  相似文献   

12.
Mentoring, particularly same-gender and same-race mentoring, is increasingly seen as a powerful method to attract and retain more women and racial minorities into science, technology, engineering, and mathematics (STEM) education and careers. This study examines elements of a mentoring dyad relationship (i.e., demographic and perceived similarity of values) that influenced the perceived quality of mentorship, as well as the effect of mentorship on STEM career commitment. A national sample of African American undergraduates majoring in STEM disciplines were surveyed in their senior year. Overall, perceived similarity, rather than demographic similarity of values, was the most important factor associated with protégé perceptions of high-quality mentorship, which in turn was associated with higher commitment to STEM careers. We discuss the implications for mentoring underrepresented students and broadening participation in STEM.  相似文献   

13.
This paper presents a curriculum, textbook and test result analysis for the new (to California) elementary school “Key Standard” mathematics curriculum, transplanted in 1998 from it's foreign roots in Asia and Europe, locations with far different cultural and economic backgrounds. Based on topic analysis methods developed by Michigan State University, this curriculum is a “quality” curriculum, since it is closely aligned with the curriculum of the six leading TIMSS math countries. Five-year test results are presented for two cohorts totaling over 13,000 students, all from four “early adoption” urban districts where 68% of the students were economically disadvantaged. Included are two cohorts of English learning immigrants totaling over 4,400 students. Performance was found to be statistically superior to similar (control) districts which continued with the old 1991 curriculum and textbooks (0.003 < p < 0.015). The focus of this paper is on the transition from far-below to above average learning performance of these students over the 1998–2002 period.  相似文献   

14.
The purpose of this study was to understand the career motivation of secondary students in science, technology, engineering, and mathematics (STEM) by comparing Korean and Indonesian students. Effects of gender and educational level on students’ STEM career motivation were also examined. To test for differences, we used Rasch analysis, 3-way ANOVA, correlation analysis, and multiple group path analysis. STEM career motivation was found to be significantly affected by interactions between country, gender, and educational level. Overall, Indonesian students had more STEM career motivation than Korean students. Korean students showed larger gender differences in STEM career motivation than Indonesian students.  相似文献   

15.
Book Reviews     
ABSTRACT

Student foundational knowledge of science, technology, engineering, and mathematics (STEM) is formed in their elementary education. Paradoxically, many elementary teachers have constrained background knowledge, confidence, and efficacy for teaching STEM that may hamper student STEM learning. The association between teacher preparation to teach STEM and student achievement in STEM motivated the authors' professional development program. The authors created and implemented a professional development program to address K–5 teacher confidence for, attitudes toward, knowledge of, and efficacy for teaching inquiry-based STEM. Using data from 2 independent cohorts the authors found significant and consistent increases in pre- to postinstitute assessments of teacher confidence, efficacy, and perceptions of STEM. Further, they found increased participant attention toward linking STEM curriculum and instruction to learning standards. Implications and suggestions for future research are discussed.  相似文献   

16.
ABSTRACT

Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels and identify differences in school STEM measures by performance levels. Several STEM-relevant variables show a significant association with effectiveness in mathematics and science, including STEM teacher turnover, calculus and early algebra participation, and mathematics and science instructional indices created from survey items in the data. Surprisingly, a negative association between students’ STEM course participation and success in STEM is consistently documented across both states, in addition to low participation of underrepresented minority students in successful schools in STEM.  相似文献   

17.
ABSTRACT

Advanced mathematics and science coursetaking is critical in building the foundation for students to advance through the STEM pathway—from high school to college to career. To invigorate students’ persistence in STEM fields, high schools have been introducing applied STEM courses into the curriculum as a way to reinforce concepts learned in traditional mathematics and science classes and to motivate students’ interests in a long-term pursuit of these areas. The author examines the role of taking applied STEM courses early in high school on taking advanced mathematics and science courses later in high school. The results suggest a positive link between early applied STEM coursetaking and later advanced mathematics and science coursetaking—one that is delineated by specific type of applied STEM course and by individual-level demographic characteristics. The findings of this study thus support policymakers and practitioners’ efforts to expand the STEM curriculum beyond traditional subjects. Continuing to do so may be one way to expand the number of students persisting in STEM.  相似文献   

18.
Gender equity issues remain a challenge in science, technology, engineering, and mathematics (STEM) fields, where women are highly underrepresented. As integrated STEM instruction becomes increasingly popular in elementary and middle school classrooms, it is important to consider whether the small group activities that are commonplace in STEM instruction support the equitable participation of young girls. This study builds on the existing body of literature to better understand how gender is related to student participation in small group STEM activities and whether students participate differently in science and engineering activities. A single embedded case study was used to explore the experiences of four students aged 10–11 years as they participated in small group work within an integrated STEM unit in their fifth-grade classroom. Two girls and two boys worked together throughout the unit to explore science content related to electromagnetism and apply their content knowledge to an engineering design challenge. Video and audio of students' small group interactions were analyzed using an observation protocol to code their participation in each 3-min segment of STEM activity. Student- and case-level analyses were used to identify patterns of interaction based on gender and type of activity (science vs. engineering). Findings suggest that boys and girls participate in small group STEM activities in different ways, adopting distinct roles within their group. In addition, students displayed divergent patterns of interaction in science- and engineering-focused lessons, suggesting that students need additional practice and support in navigating between science and engineering in integrated STEM units.  相似文献   

19.
Rapid growth of Advanced Placement (AP) exams in the last 2 decades has been paralleled by national enthusiasm to promote availability and rigor of science, technology, engineering, and mathematics (STEM). Trends were examined in STEM AP to evaluate and compare growth and achievement. Analysis included individual STEM subjects and disaggregation by ethnicity. Analysis indicates growth in STEM AP was extraordinary but was slightly outmatched by non-AP subjects. Moreover, growth in STEM AP has been most pronounced among underrepresented minorities, even though their achievement has slightly declined. Interestingly, the proportion of students scoring at the lowest level grew steadily for all students from 1997 to 2010, yet this proportion was substantially less for Asian and White students compared to underrepresented minorities. Finally, it was found that achievement in most high-participation STEM subjects slightly decreased from 1998 to 2013, while achievement held steady or slightly increased in lower participation STEM AP subjects.  相似文献   

20.
ABSTRACT

Despite good career prospects in science, technology, engineering, and mathematics (STEM) fields, persistence of students in STEM fields of study at the community college and transfer to universities to pursue STEM majors is often quite low. Theories of persistence emphasize the importance of engagement, integration, validation, and financial assistance. The DCCCD STEM Institute is a comprehensive cocurricular program for community college STEM students. It illustrates the application of persistence theories in a multicollege urban district with a diverse student body. The STEM Institute uses a student/faculty cohort model with mentoring, professional skills programming, and scholarship support to transform student perceptions of themselves, integrate them into a STEM educational community, and validate their membership within that community. Institute membership also reduces isolation and financial concerns as potential barriers to persistence. STEM faculty also participate in professional skill development through a cross-college and cross-disciplinary cohort. Data on students who participated in the DCCCD STEM Institute from 2010 through 2014 show that 92% remain in a STEM educational or career pathway. Important practice implications for community college professionals include (1) forming student and faculty cohorts, (2) facilitating the development of mentoring relationships, (3) providing adequate centralized staffing, and (4) integrating resources and opportunities into a unified cocurricular program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号