首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

2.
一函数 1.变量x和y有下述关系,问y是x的函数吗? ①x在[0,+∞)中变化,y~2=x. ②x在[0,+∞)中变化,y=x~(1/2). ③x在(-∞,+∞)中变化,y=3. 2.求下列函数的定义城: ①y=1/(x~2+1) ②y=2x/(x~2-3x+2) ③y=(x+1/x-1)~(1/2) ④f(x)={sinx,x≥0,1/(x+1),-1相似文献   

3.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

4.
一些求参数取值范围的问题可以转化为求最值的问题例1 当a取何实数时,方程2acos~2x-sinx+2+a=0有实数解? 解:由原方程解出a=(sinx+2)/(2cos~2x+1)=(sinx-2)/(3-2sin~2x)∴1/a=(2sin~3x-3)/(2-sinx)=-2sinx-4+5/(2-sinx) 设t=2-sinx∈[1,3]。化1/a=2t+5/t-8=(2t~(1/2)-(5/t)~(1/2)+2(10)~(1/2)-8 故在(2t)~(1/2)=(5/t)~(1/2)即t=5~(1/2)/2~(1/2)=2-sinx 即sinx=4-(10)~(1/2)/2(∈[-1,1])时1/a取最小值2(10)~(1/2)-8  相似文献   

5.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

6.
在浙江省88年下半年编印的一本高三年级升学复习资料上有这样一个题目:“判断函数y=(1 sinx-cosx)/(1 sinx cosx)的奇偶性”,并写明答案为奇函数。揣摩其答案得出的理由为: y=(1 sinx-cosx)/(1 sinx cosx)=(2sinx/2cosx/2 2sin~2x/2)/(2cosx/2sinx/2 2cos~2x/2)=(2sinx/2(cosx/2 sinx/2))/(2cosz/2(sinx/2 cosx/2))=tgx/2,∵f(-x)=tg(-x/2)=-tgx/2=-f(x),∴函数y=(1 sinx-cosx)/(1 sinx cosx)是奇函数。初看,解答正确.其实结论是错误的,原函数既非奇函数也非偶函数。之所以会产生这种情况,究其原因,一方面是现行教材中对函数奇偶性的定义及判断方法不够明确;另方面教师本身对函数奇偶性的定义及  相似文献   

7.
高中数学课本第四册复习题八第8(9)题:求y=arc sin(msinx-ncosx)/(m~2 n~2)~(1/2)的导数。解:y′=1/(1-(msinx-ncos)~2/(m~2 n~2))~(1/2)·(mcosx nsinx)/(m~2 n~2)~(1/2) =(m~2 n~2)~(1/2)/(m~2 n~2-m~2sin~2x 2mnsinxcosx-n~2cos~2x)~(1/2)·(mcosx nsinx)/(m~2 n~2)~(1/2) =(mcosx nsinx)/(m~2cos~2x 2mnsinxcosx n~2sin~2x)~(1/2)=(mcosx nsinx)/|mcosx nsinx| =1 当mcosx nsinx>0 =-1 当mcosx nsinx<0于是产生了一个问题:当mcosx nsinx=0时,y的导数存在吗?我们不妨先设m≠0,n≠0 mcosx nsinx=0 tgx=-m/n即在x=kπ-arctgm/n(K∈J)时y的导数是否存在,  相似文献   

8.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

9.
本文将利用辅助用公式asinx bcosx=(a~2 b~2)~(1/2)sin(x φ)(tgφ=b/a)对函数a_1sinx b_1cox c_1/a_2sinx _2conx c_2的值域进行探讨,并对所对值域的可靠性进行讨论.用此方法求函数y=a_sinx b_1cos c_1/a_2sinx b_2cosx c_2的值域具有一定的广泛性,实用性  相似文献   

10.
在f(x,y)=0的条件下,求u=g(x,y)的最值,我们称这类问题为解析型最值问题,其中把f(x,y)=0视为定曲线,u=g(x,y)视为动曲线,在中学阶段解这类问题,往往都是借助于一些特殊的方法,学生不易掌握,本文给出一种极坐标解法,供读者参考。 例1 实数x、y满足4x~2-5xy 4y~2=5,又设S=x~2=y~2,则(1993年全国高中数学联赛试题) 解:定曲线可化为p~2=10/8-5sin2θ 当sin2θ=1时,p_(max)~2=10/3; 当sin2θ=-1时,p_(min)~2=10/13. 而动曲线S=x~2 y~2=p~2,  相似文献   

11.
我们知道复合函数y=sin(arc sinx)在定义域x∈[-1,1]上都有sin(arc sinx)=x.对于复合函数y=arc sin(sinx)的问题,现行教材仅讨论了x∈[-πc/2,π/2]时,arc sin(sinx)=x的情形,实际上,这个复合函数的定义域是x∈R,而值域是y∈[-  相似文献   

12.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

13.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

14.
本刊1989年第6期《关于函数y=(c+bsinx)/(d+acosx)的极值》一文,曾提出两个问题:一、在什么条件下,函数y有极值;二、若函数有极值,那么怎样求极值。并给出该类极值问题的三种解法,读后很受启发。但在全文的论述中,似乎并未涉及问题一,在文末的“注意”中提出的条件,也并非极值存在的充分条件。例如,在函数y=(1+3sinx)/(1+2cosx)中,满足条件|d|<|a|,但它无极值。事实上,点P(-1,-1)位于椭圆  相似文献   

15.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

16.
求函数 y=x+(1-2x)~(1/2)的值域,一般用如下方法:由函数式得 y-x=(1-2x)~(1/2)(1)两边平方得 y~2-2xy+y~2=1-2x(2)整理得 x~2-2(y-1)x+(y~2-1)=0 (3)∵ x 是实数,  相似文献   

17.
许多数学竞赛题,构思新颖、独特,有一定的难度,但只要我们善于抓住题目的特征,联想已有的概念、公式、性质、定理等,可巧妙地加以解决。 1联想概念 例1 已知x,y∈[-π/4,π/4],a∈R, 且 x~3 sinx-2a=0, 4y~3 sinycosy a=0, 求cos(x 2y)的值。(1994年全国高中数学联赛题) 分析 将已知条件变形为 x~3 sinx=2a, (2y)~3 sin2y=-2a。  相似文献   

18.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

19.
<正>求三角函数的最值是高考的热点问题之一,解决此类问题的思维方法一般是数形结合,充分利用函数的图像和性质,下面举例说明。1.利用两种方法求解函数y=(asin x+b)/(csin x+d)或y=(acos x+b)/( ccos x+d)的最值。例1求函数f(x)=(sin x-1)/(2sin x+3)+2的  相似文献   

20.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号