首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正多边形是一种特殊而又重要的图形,它涉及许多计算问题,不少同学对这部分计算望而生畏,错误频频.我们认为,学好本节内容应注意以下几个方面.一、正确理解正多边形的有关概念各边都相等,各角都相等的多边形叫做正多边形.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心,...  相似文献   

2.
1.n边形(n≥3)的内角和为______,任意多边形的外角和等于______.2.各边都 相等,各角也都相等的多边形叫做正多边形,正n边形(n≥3)的每一个内角的度数为______,每一个外角的度数为______.3.n边形(n≥3)从某个顶点出发的对角线有_____条,n边形的对角线共行______条.4.多边形镶嵌的基本特点是既无缝隙、又不重叠,因此要求拼接存同一个点处的各个角的和恰好等于_______.  相似文献   

3.
我们知道各边相等,各角也相等的多边形叫做正多边形. 关于正多边形的判定有如下的定理: 把圆分成,n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.  相似文献   

4.
正多边形和圆密切相关的两个重要定理是:n等分圆周可以得到正n边形; 正n边形一定有一个外接圆和一个内切圆,且两圆同心.它们是正多边形有关计算的理论根据.课本(初中几何第二册)上是以n=5的憎况为例来证明两个定理.这样处理便于学生接受,但为避免学生容易产生以特殊代替一般的感觉与印象,我认为教学时,视实际条件也可在具体形象的基础上进一步演示在一般情况下的证明.定理1 把圆分成.等分(n≥3),(1)依次连结各分点所得的多边形是这个圆的内接正n边形;  相似文献   

5.
<正>关于正多边形的定义,教材上是这样的定义的:各边相等,各角也相等的多边形是正多边形.除此定义外,感觉应该还有可以体现正多边形特点的其他表达形式.我们知道,研究图形的判定可以从它的性质的逆命题入手.因此从"正n边形有n条对称轴"的性质出发,大胆提出假设——"有n条对称轴的n边形为正n边形".经过认真的思考,对此假设给出了下面的证明.  相似文献   

6.
关于正多边形的定义,教材上是这样的定义的:各边相等,各角也相等的多边形是正多边形.除此定义外,感觉应该还有可以体现正多边形特点的其他表达形式.我们知道,研究图形的判定可以从它的性质的逆命题入手.因此从"正n边形有n条对称轴" 的性质出发,大胆提出假设——"有n条对称轴的n边形为正n边形".经过认真的思考,对此假设给出了下面的证明.  相似文献   

7.
一、正多边形中的直角三角形例1已知正六边形的半径是6,它的内切圆与外接圆的面积比是.解:正多边形的半径和边心距分别是它外接圆和内切圆的半径,以半径OA、边心距OB,边长的一半AB建立Rt△OAB.  相似文献   

8.
<正>在n(n为整数且n≥3)边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形的外角和等于360°.一、将求正多边形的边数转化为求外角的个数例1 已知一个正多边形的每个外角等于60°,则这个正多边形是( )(A)正五边形 (B)正六边形(C)正七边形 (D)正八边形分析求出这个多边形的外角个数,就能得到正多边形的边数.解根据多边形外角和定理,得多边形的外角个数为360°÷60°=6.又多边  相似文献   

9.
[1]中获得的主要结果是:正多边形的内切圆(或外接圆)上任一点至各顶点的距离平方之和为定值;正多边形的内切圆(或外接圆)上任一点至各条边的距离平方之和为定值.  相似文献   

10.
[1]中获得的主要结果是: 1°正多边形的内切圆(或外接圆)上任一点至各边(或各项点)的距离平方之和为定值. 2°以正多边形的内切圆(或外接圆)上任一点为始点,各顶点为终点的向量之和的模为定值.  相似文献   

11.
文[1]将欧拉(Ewler)不等式向双圆n边形(既有外接圆又有内切圆的凸n边形)推广,得到:Rcos≥r(1)近期,文[2]和[3]从“长度”出发,分别给出了不等式(1)的加强形式.本文拟建立它的一种新的面积隔离,即有定理设双圆n边形的面积、外接圆半径、内切圆半径分别为S、R、r,则当且仅当n边形是正n边形时不等式(2取)等号.证如图1,I为双圆n边形A_1A_2…A_n的内切圆圆心,令A_iA(i+1)之长为a_i(i=1,2,……,n;A_(n l)≡A_1).考虑到y=ctgx在(0,)上是下凸函数,且,从而由下凸函数的琴生不等式得:因此,有:下面分几种情形来证…  相似文献   

12.
本刊文[1]证明了关于圆内接正多边形的下述性质:正 n(n≥3)边形外接圆上任一点到该正 n 边形各顶点距离的平方和为2nR~2(其中 R 是外接圆半径).文[1]的证明比较繁复,今简证如下:在平面直角坐标系中,设任意给定的一个正 n 边形A_0A_1A_2…A_(n-1)各顶点的坐标是 A_k(Rcos(2kπ/n),Rsin(2kπ/n))(k=0,1,2,…,n-1)其外接圆上任意取定的一点 P的坐标是 P(Rcosθ,Rsinθ).显然点 P 到正 n 边形各顶点距离的平方和 S 是  相似文献   

13.
《中学生数理化》2010,(4):22-23,45
知识梳理 注意理解正多边形的中心、半径、边心距、中心角等概念.会将正多边形边长、半径、边心距和中心角的有关计算的问题转变为解直角三角形的问题.了解用量角器等分圆心角的方法.会用直尺和圆规作圆内接正方形和圆内接正六边形.理解任何正多边形都有一个外接圆和一个内切圆.且这两个圆是同心圆的知识.  相似文献   

14.
1765年,数学泰斗欧拉(L.Euler)首先发现:任意一个三角形的外接圆半径R、内切圆半径r与其两圆心距d恒满足关系R~2=d~2 2Rr, ①从而由d~2≥0,得R≥2r. ② 这就是众所周知的欧拉不等式. 1798年,欧拉的学生富斯(N·Fuss)又证明:同时有外接圆和内切圆的四边形,其外接圆半径R,内切圆半径r与其两圆心距d恒满足关系(1/(R d)~2) 1/(R-d)~2=1/r~2,R~2=d~2-r~2 r(r~2 4R~2)~(1/2).据此,由d~2≥0即可得R≥(2r)~(1/2). ③ 这便是所谓的富斯不等式. 1988年,刘健将②、③推广成:设双圆n边形(既有外接圆又有内切圆的n边形)的外接圆半径为R,内切圆半径为r,则R≥rsecπ/n. ④ 近年来,我国学者还相继给出④的多种证法,并有人将其延拓到一般多边形的情形. 我们追寻先达时贤之笔迹,通过深入分析研究发现,④可以进一步加强为  相似文献   

15.
14.正多边形 (1)正多边形的定义 各边相等。各角也相等的多边形叫做正多边形.  相似文献   

16.
正欧拉在1765年给出关于三角形的外接圆半径R与内切圆半径r的著名不等式R≥2r.近年来,不少文章对这个不等式进行探讨,如文[1]、[2]、[3]、[4],但是这些都是基于三角形下进行的.本文针对具有外接圆和内切圆的多边形,推广出其外接圆半径R与内切圆半径r具有如下关系:R1cos(πN)×r其中:N表示多边形的边数.假设具有外接圆和内切圆的多边形为N边形;该N边形的边长分别为:d1,d2,…,dN;且各边所对应的外接圆的圆心  相似文献   

17.
文[1]指出:在双心四边形 ABCD 中,若其外接圆半径为 R,面积为 S,内切圆半径为 r,则(16r~2)/S≤cotA/2 cotB/2 cotC/2 cotD/2≤(8R~2)/S(1)笔者经研究发现,在双心 n 边形中也有定理在双心 n 边形 A_1A_2…A_n 中,若其外接圆半径为 R,内切圆半径为 r,面积为 S,则有  相似文献   

18.
我们知道,任何一个正多边形都存在外接圆和内切圆且两圆同心。本文四边形内切圆和外接圆存在时,它的一些性质。Ⅰ.存在条件任何一个圆存在着任意多的内接四边形和外切四边形,但并非任意的一个四边形都存在内切圆和外接圆,那么什么情况下这种四边形才存在呢?为此先引进两个引理引理1:四边形有外接圆的充要条件是其对角互补。(证略) 引理2. 四边形外切于圆的充要条件是其对边之和相等。  相似文献   

19.
这一单元,在给出了正多边形的定义以后,研究了圆和正多边形的关系,并根据正n边形的半径和边心距,能把正n边形分成2n个全等的直角三角形,解决了关于正多边形的边长、半径和边心距的计算问题;介绍了几种特殊正多边形的尺规作图方法(正多边形的作图  相似文献   

20.
一、选择题(每小题3分,共30分)1.有下列命题①平分弦的直径垂直于这条弦;②圆内接四边形是矩形;③两弧的度数相等,则它们所对的圆心角亦相等;④各边相等的圆内接多边形是正多边形其中,正确命题的个数是().(A)1(B)2(C)3(D)42.等边三角形外接圆的面积是内切圆的面积的()倍.(A)2(B  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号