首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
关于二次三项式ax~2+bx+c(a≠0),本文主要研究两个方面的问题: 一、二次三项式能因式分解的判定二次三项式ax~2+bx+c(a≠0)在给定数集内能否进行因式分解,这是中学代数的一个重要课题。现介绍如下四个定理。定理一有理系数二次二项式ax~2+bx+c(a≠0)在有理数集内能分解因式的充要条件是△=b~2-4ac为一个有理效的平方。证明:(1)必要性,若 ax~2+bx+c=a(x-x_1)(x-x_2),为有理数,因a,b为有理数x_1,x_2也为有理数,故只有(b~2-4ac)~(1/2)为有理数。设(b~2-4ac=|m|(m为有理数),则b~2-4ac=m~2。即判别式△=b~2-4ac是一个有理数的平方。  相似文献   

2.
在初中《代数》第三册第37页中有这样一个结论: 若x_1,x_2是一元二次方程ax~2+bx+c=0的两根,则有ax~2+bx+c=a(x-x_1)(x-x_2). 灵活运用上述结论,解题中常能收到事半功倍的效果.下面以初中数学竞赛题为例加以说明.例1己知  相似文献   

3.
我们知道,如果抛物线y=ax~2+bx+c与x轴有两个交点,横坐标分别是x_1和x_2,则这个抛物线可写成交点式y=a(x…x_1)(x-x_2)。本文提供几个利用交点式求二次函数的解析式的例题,供同学们学习时参考。  相似文献   

4.
利用构造法解题,是较长一段时间来各类数学杂志讨论的热门。笔者认为,这些讨论对于训练思维、培养观察、联想、综合分析能力、提高解题水平,无疑是有益的。本文试图从二次式这一个角度,用构造法探求数学竞赛中有关问题,供同行们参考。二次式通常指二次方程、二次函数及二次不等式等,其主要性质有: Ⅰ.若实系数一元二次方程ax~2+bx+c=0(a≠0)有实数解,则△=b~2-4ac≥0,x_1+x_2=-(b/a),x_1·x_2=c/a,反之变然, Ⅱ.二次函数y=ax~2+bx+c(a≠0),  相似文献   

5.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

6.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

7.
中学代数中的二次三项式 ax~2 bx c,一元二次方程 ax~2 bx c=0,二次函数y= ax~2 bx c,一元二次不等式 ax~2 bx c>0(或<0),这“四个二次式”中的 a 均不为零.串起来形成“四个二次式”的知识结构.其中二次三项式是以因式分解为主,分解的方法有公式法、十字相乘法、配方法等,它是研究一元二次方程和二次函数的基础;一元二次方程又包括了一元二次方  相似文献   

8.
一元二次方程ax~2 bx c=0(a≠0)根的判别式:Δ=b~2-4ac不仅是ax~2 bx c=0(a≠0)有无实根判断的重要依据,而且在代数的其它方面也有着广泛的应用,教师在教学中若能适当加以引导,则必能开阔学生的思路。本文仅就判别式在二次三项式的因式分解方面的应用,谈谈自己粗浅的看法。  相似文献   

9.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

10.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

11.
一元二次方程ax2 +bx +c =0 (a≠ 0 )的根的判别式△ =b2 - 4ac ,不仅可以判定方程实根情况 ,还可以用它判别二次三项式ax2 +bx +c因式分解的方法与范围 ,求抛物线y =ax2 +bx +c(a≠ 0 )与x轴交点的个数 ,以及证明某些几何不等式问题 ,现以有关中考试题为例 ,简述一元二次方程根的判别式的应用  相似文献   

12.
一元二次方程ax~2 bx c=0(a≠0)是初中代数的重点内容,除了求根公式和韦达定理(根与系数关系)外,我们可进一步推得如下有用定理设x_1、x_1是方程ax~2 bx C=0(C≠0)的两根,则有|x_1-x_2|=△~(1/△)|a|(△=b~2-4ac)(*) (*)式的证明很简单,利用求根公式即可.但它的作用却不可小看,特别是用它求二次函数y=ax~2 bx C与x轴两个交点之间的距离较为简捷.  相似文献   

13.
1.配方法 对于二次函数y=ax~2+bx+c,通过配方可得: y=a(x+(b/2a))~2+((4ac-b~2)/4a)。 由二次函数的极值性可知: 若a<0,则y有极大值,当x=-b/2a时,y_(max)=4ac-b~2/4a;若a>0,则y有极小值,当x=-b/2a时,y_(min)=4ac-b~2/4a。  相似文献   

14.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

15.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

16.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

17.
1基本内容1)如果ax~2 bx c=0(a≠0)的2根是x_1、x_2,那么x_1 x_2=-b/a·x_1·x_2=c/a.一元二次方程根与系数的关系叫做韦达定理.2)以2个数x_1、x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1 x_2)x x_1x_2=0.这种根与系的关系叫做韦达定理的逆定理.  相似文献   

18.
大家知道,一元二次方程ax~2 bx c=0(a≠0)的两根为: x_1=-b Δ~(1/2)/2a,x_2=-b-Δ~(1/2)/2a  相似文献   

19.
以函数f(x)=lg(ax2 bx c)为载体求参数范围的问题.本文就此类函数定义域和值域分别为R的实质含义作出等价“转译”.1·解剖问题得出结论f(x)=lg(ax2 bx c)(a≠0)的定义域为R的等价说法是什么呢?容易看出,其实质等价于:当x∈R时,ax2 bx c>0恒成立,那么问题就转化为二次函数:y=ax2 bx c>0恒成立,则等价于a>0Δ<0(其中Δ=b2-4ac,下同)f(x)=lg(ax2 bx c)(a≠0)的值域为R的等价说法又是什么呢?注意到当y=lgx的定义域为(0, ∞)时,其值域为R,即y=lgx的值域为R是由其定义域决定的,若定义域不是(0, ∞),那么值域也就不是R了.如此,若f(x)=lg(ax2 bx…  相似文献   

20.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号