首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

2.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

3.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

4.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

5.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

6.
应用面积射影公式求二面角的大小 ,对于 (一 )平面角虽可作出 ,但比较困难 ,计算繁琐 ;(二 )平面角无法作出 ,或很难下手 .如 :1.直三棱柱ABC-A1 B1 C1 中 ,∠BAC=90° ,AB =BB1 =1,直线B1 C与平面ABC成30°角 ,求二面角B -B1 C -A的余弦值 .解 :易知∠BCB1 =30° ,作AD⊥BC于D ,则AD ⊥面BCB1 ,△AB1 C在面BCB1 上射影是△DCB1 .设二面角为θ ,cosθ =S△DCB1S△AB1C,其中AC =2 ,AB1 =2 ,S△AB1C =1,B1 C =2 ,CD =2 33,S△DCB1=12 B1 C·CD·sin30°=33,即二面角的余弦值为 33.1题图 2题图2 .正方体中 ,求二…  相似文献   

7.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

8.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

9.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

10.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

11.
文[1]P48三夹角与距离中证明了命题:如图1,设OA,OB,OC是三条不共面的射线(即三面角),∠AOB=θ1,∠COB=θ2,∠AOC=θ3,二面角A-OB-C为直二面角(即平面AOB⊥平面BOC),则有公式cosθ3=cosθ1·cosθ2①.  相似文献   

12.
如图,在三棱锥P-ABC中, PC⊥平面ABC,作CD⊥AB于点 D,连结PD,则易知∠PDC是二面角P-AB-C的平面角,设∠PDC=θ,二面角的棱AB=m, 三棱锥的高PC=h,三棱锥的底△ABC的面积为S.则  相似文献   

13.
苏教版《数学课课练》高二下册第17课时例1:已知:∠AOB=90°,过点O引∠AOB所在平面的斜线OC与OA,OB分别成45°,60°角,求二面角A-OC-B的余弦值.图1本题是在已知三个面角∠AOB,∠AOC,∠BOC的条件下,利用二面角的定义求二面角A-OC-B的余弦值.若将本题中的三个面角由特殊推广到一般,设∠AOB=θ1,∠AOC=θ2,∠BOC=θ3,二面角A-OC-B为θ,则有如下结论:cosθ=cosθs1i-nθc2o·ssθi2n·θc3osθ3.证明在OC上取一点D,使OD=1,过点D分别在面AOC,面BOC内作DE⊥OC,DF⊥OC,DE,DF分别交OA,OB于E,F,连EF,则∠EDF为二面角…  相似文献   

14.
一、a·b=|a||b|cosθ中的cosθ与S=12|a||b|sinθ中的sinθ是建立起数量积与面积关系的桥梁.【例1】设i,j是平面直角坐标系内x轴,y轴正方向上的单位向量,且AB=4i 2j,AC=3i 4j,则△ABC的面积等于()(A)15(B)10(C)7.5(D)5分析:①由题意可知:AB=(4,2),AC=(3,4),所以|AB|=25,|AC|=5,AB·AC=4×3 2×4=20②由S△ABC=12|AB||AC|sin∠BAC,故知必须先求sin∠BAC.由AB·AC=|AB||AC|cos∠BAC,可得cos∠BAC=25从而由sin2∠BAC cos2∠BAC=1可求出∠BAC=55,S△ABC=5,故选D.二、利用a⊥bZx1x2 y1y2=0来实…  相似文献   

15.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

16.
一、三余弦公式及其推论三余弦公式:如图1,PO⊥平面α于O,PA∩α=A,ABα,直线AP与AB成θ角,AP与AO成θ1角,AO与AB成θ2角,则有cosθ=cosθ1cosθ2.证明:如图1,作OB⊥AB于B,连结PB,则PB⊥AB,∠PAB=θ,∠PAO=θ1,∠OAB=θ2,设|PA|=1,则|AO|=cosθ1,|AB|=|AO|cosθ2=cosθ1cosθ2,又|AB|=cosθ,所以cosθ=  相似文献   

17.
空间几何体的基本结构是三面角,对于三面角,我们有: 定理:在三面角P-ABC中,若以PB为棱的二面角是直二面角;记∠APB=θ_1,∠BPC=θ_2,∠APC=θ,以PA、PC为棱的二面角分别PA、PC, 则:  相似文献   

18.
1问题的提出问题1526:△ABC中,∠C=90°,BC=a,AC=b,AB=c.D、E、F分别是AB、AC、BC上的点.若△DEF为等腰直角三角形,且∠EDF=90°,求△DEF面积的最小值.《数学通报》2005年第1期给出了该问题的解答,本文对该问题进行推广,得到以下定理△ABC中,∠C=θ,BC=a,AC=b,AB=c.D是线段AB上的点,E、F分别是直线AC、BC上的点.若△DEF满足条件:DE∶DF=k(k为正常数),∠EDF=180°-θ,则△DEF面积的最小值是k8abcR(a kb)2sinθ(其中R是△ABC外接圆的半径).(1)当△ABC为锐角三角形时,如图,设∠FDB=α,则∠DFB=180°-(α B).由于…  相似文献   

19.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

20.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号