首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
全日制十年制学校初中课本《数学》第五册第184页第18题是求证:在园内接四边形ABCD中,AB·CD+BC·AD=AC·BD(提示:设法在BD上取P点使AB·CD=AC·BP)。证明:从A引直线AP交BD于P, 使∠BAP=∠CAD又有∠ABP=∠ACD, ∴△ABP∽△ACP, 图1 ∵BP:DC=AB:AC, ∴AB·DC=AC·BP。……①又∵∠BAP=∠CAD, ∴∠BAC=∠PAD, 又∠ACB=∠ADP。∴△ABC∽△APD, 则 BC:PD=AC:AD, ∴AD·BC=AC·PD……②①+②得AB·CD+BC·AD =AC(BP+PD)=AC·BD。数学老师告诉我们,这是平面几何中一个相当重要的定理,叫做Ptolemy定理:“园内接四边形中,二条对角线所包距形面积等于一组对边所包距形面积与另一组对边所  相似文献   

2.
计算菱形面积时,如果已知其对角线长,可运用公式S_(菱形ABCD)=1/2AC·BD.公式的证明如下:如图1.设对角线AC、BD相交于点O.由菱形的对角线互相垂直,知AC⊥BD,从而OD、OB分别为△ACD、△ACB中AC边上的高,因此有S_(菱形ABCD)=S_(△ABC)+S(△ADC)=1/2AC·OB+ 1/2AC·OD=1/2AC·BD.  相似文献   

3.
1 基础知识托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积 .证明 :如图 1 ,四边形ABCD内接⊙O ,在BD上取点P ,使∠PAB =∠CAD ,则△ABP∽△ACD ,于是ABAC=BPCD AB·CD =AC·BP .又△ABC∽△APD ,有BC·AD =AC·PD .上述两乘积式相加 ,得AB·CD +BC·AD =AC(BP +PD) =AC·BD .①注 :此定理有多种证法 ,例如也可这样证 :作AE∥BD交⊙O于E ,连结EB、ED ,则知四边形BDAE为等腰梯形 ,有EB =AD ,ED =AB ,∠ABD =∠BDE=θ ,且∠EBC +∠EDC =1 80°,令∠BAC =φ ,AC与BD交于点G ,则…  相似文献   

4.
宜昌市1999年中考数学试卷的第31题和第33题是这样的: 第31题如图,点A、C、B、D在同一个圆上,AB是圆的直径,P是AB上任意一点。 (1)求证:△ABC是直角三角形; (2)求证:tg∠ACP·tg∠BDP=(BC·AD)/(AC·BD)  相似文献   

5.
托勒密,2世纪希腊数学家.定理在圆的内接四边形ABCD中.AB·CD+BC·AD=AC·BD.证明如图1所示,在BD上找一点P,使∠1=∠2.于是在△ABP和△ACD中。  相似文献   

6.
全日制十年制学校初中数学课本几何第二册复习题五第20题: 例一:如图求证。在园内接四边形ABCD中,AB·CD+BC·AD=AC·BD,课本中有这样一段提示(设法在BD上取P点,使AB·CD=AC·BP)学生就有这样一个疑问,这个P点是如何设想出来的。  相似文献   

7.
初级中学课本《几何》第二册第85页上有这样一道例题: 命题1 如图1,AD是△ABC的高,AE是△ABC的外接圆直径。求证:AB·AC=AE·AD。本题的证明是极为简单的,只须连结BE,由△ABE∽△ADC即得结论。将命题1的条件稍加改变,则有: 命题2 △ABC中,∠A的平分线交BC于D,交外接圆于E(图2)。则AB·AC=AD·AE。以上两个命题告诉我们:三角形中凡关于高。外接圆直径,内角平分线与两边发生联系的某些命题,均可用它们来解决。例1 如图3,△ABC内接于直径为d的圆。设BC=a,AC=b,那么△ABC的高CD等于多少?  相似文献   

8.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

9.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

10.
例1 如图1,AB是⊙O的直径,MN⊥AB于T,点D在MN上,连结AD交⊙O于点C. 求证:AC·AD=AB·AT. 分析本例只要连结BC,证△ABC∽△ADT就能推出AC·AD=AB·AT. 探索1 图1中的点D在直线MN上,但却是在⊙O外.根据点与圆的三种位置关系,可把点D沿着DM的方向移动,使它移到⊙O上(如图2).此  相似文献   

11.
命题1 已知:如图1,点I为△ABC的内心,延长AI交△ABC的外接圆于点D. 求证:DB=DI=CD. (《几何》第三册P199T12) 证明连结BI.由I为△ABC的内心,得  相似文献   

12.
用多种方法解题 ,不仅可以拓宽视野 ,训练思维 ,而更重要的是归纳解法 ,总结规律 ,提高能力。下面以初中几何第二册“相似形”一章中 P2 55页第十八题的四种解法为例 ,总结有关线段成比例的解法及作辅助线的规律。题目 :如图 1 ,BD=CE,求证 :AC· EF=AB· DF。解法一 :过 E作 EG∥ AB交 BC于 G,在△ ABC中 ,EG∥ AB,∴ AC∶AB=EC∶ EG。在△ DBF中 ,EG∥ DB,∴ DF∶ EF=DB∶ EG。又∵ BD=CE,∴ AC∶ AB=DF∶ EF。即 AC· EF=AB· DF。解法二 :过 E作 EG∥ BC交 AB于 G。在△ ABC中 ,EG∥ BC,∴ AC∶ AB…  相似文献   

13.
用余弦定理证明几何命题,常常可以不添或少添辅助线,且思路清晰。现将余弦定理在证明几个著名定理中的应用介绍如下: 1.托勒密定理 在圆内接四边形ABCD中,求证:AC·BD=AB·CD+AD·BC(如图1) 证明 记AB=a,BC=b,CD=c,AD=d,AC=e,BD=f。即证ef=ac+bd。图1 因 cosA=-cosC,应用余弦定理,得  相似文献   

14.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

15.
初中《几何》第二册第29页20题:求证在圆内接四边形ABCD中,AB·CD+BC·AD=AC·BD。这是一道有用的习题.利用它的结论处理有些问题较为方便。因此,我建议教师们在教学中不可忽视它,可让同学们记住它的结论,证某些题可直接运用,现举两例说明它的作用。例1 已知P是正方形ABCD外接圆AD劣弧上一点,求证:(1)(PB+PD)/PC=2~(1/2):(2)(PB-PD)/PA=2~(1/2);(3)PB~2-PD~2=2 PA·PC。证明:(1)在圆内接四边形PBCD中,有PB·CD+PD·BC=BD·PC。  相似文献   

16.
对角线互相垂直的四边形的面积等于它的两条对角线长的积的一半,下面我们证明这个结论。已知:四边形ABCD中,对角线AC⊥BD于E,如图1.求证:S四边形ABCD=1/2AC·BD.  相似文献   

17.
题目如图1,BD=CE,求证:AC·EF=AB·DF.(初二几何P255 18题)探索1 本题的逆命题  相似文献   

18.
证明线段的等积式时,应把等积式作适当变形化成比例式,弄清比例式所涉及的线段是否在已知图形中,如不在,则可作相应的辅助线构造相似三角形证明线段的等积式。例1 在△ABC中,AB=AC,BD⊥AC。试说明:BC2=2AC·CD 分析考虑到等积式的倍数2可对BC2=2 AC·CD作如下变形  相似文献   

19.
每期一题     
题在△ABC中,AB相似文献   

20.
<正>笔者在解答几道2021年的平面几何竞赛题时,碰到一个与内心有关的图形.如图1,锐角△ABC的内心为I,⊙I分别切边BC、CA、AB于点D、E、F.过点D作DP⊥EF于点P.在这个几何结构中,有熟知的结论:(FP/PE)=(BD/DC).设AI与△ABC外接圆的第二个交点为M,过点M作△ABC外接圆的直径MN,联结MB、MC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号