首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study used qualitative and quantitative approaches to evaluate the effectiveness of self‐learning modules (SLMs) developed to facilitate and individualize students' learning of basic medical sciences. Twenty physiology and nineteen microanatomy SLMs were designed with interactive images, animations, narrations, and self‐assessments. Of 41 medical students, 40 students voluntarily completed a questionnaire with open‐ended and closed‐ended items to evaluate students' attitudes and perspectives on the learning value of SLMs. Closed‐ended items were assessed on a five‐point Likert scale (5 = high score) and the data were expressed as mean ± standard deviation. Open‐ended questions further evaluated students' perspectives on the effectiveness of SLMs; student responses to open‐ended questions were analyzed to identify shared patterns or themes in their experience using SLMs. The results of the midterm examination were also analyzed to compare student performance on items related to SLMs and traditional sessions. Students positively evaluated their experience using the SLMs with an overall mean score of 4.25 (SD ± 0.84). Most students (97%) indicated that the SLMs improved understanding and facilitated learning basic science concepts. SLMs were reported to allow learner control, to help in preparation for subsequent in‐class discussion, and to improve understanding and retention. A significant difference in students' performance was observed when comparing SLM‐related items with non‐SLM items in the midterm examination (P < 0.05). In conclusion, the use of SLMs in an integrated basic science curriculum has the potential to individualize the teaching and improve the learning of basic sciences. Anat Sci Educ 3: 219–226, 2010. © 2010 American Association of Anatomists.  相似文献   

2.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

3.
From the early 19th century until the most recent two decades, open‐space and satellite museums featuring anatomy and pathology collections (collectively referred to as “medical museums”) had leading roles in medical education. However, many factors have caused these roles to diminish dramatically in recent years. Chief among these are the great advances in information technology and web‐based learning that are currently at play in every level of medical training. Some medical schools have abandoned their museums while others have gradually given away their museums' contents to devote former museum space to new classrooms, lecture halls, and laboratories. These trends have accelerated as medical school enrollment has increased and as increasing interest in biological and biomedical research activities have caused medical schools to convert museum space into research facilities. A few medical schools, however, have considered the contents of their museums as irreplaceable resources for modern medicine and medical education and the space these occupy as great environments for independent and self‐directed learning. Consequently, some medical schools have updated their medical museums and equipped them with new technologies. The Anatomical Museum of Leiden University Medical Center in The Netherlands and the Medical Museum of Kawasaki Medical School in Kurashiki, Okayama, Japan, are two examples of such upgraded museums. Student surveys at Leiden University have indicated that all students (100%) found audio‐guided museum tours to be useful for learning and majorities of them found guided tours to be clinically relevant (87%). However, 69% of students felt that museum visits should be optional rather than compulsory within the medical training curriculum. Anat Sci Educ 3:249–253, 2010. © 2010 American Association of Anatomists.  相似文献   

4.
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer‐assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low‐budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer‐based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first‐year medical students who took the elective CHA course and those who did not in the three academic years 2007–2008, 2008–2009, and 2009–2010. The results of this study indicate that the CHA‐enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer‐assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer‐assisted learning in a multilingual and diverse cultural environment. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

5.
The complexity of the material being taught in clinical neuroscience within the medical school curriculum requires creative pedagogies to teach medical students effectively. Many clinical teaching strategies have been developed and are well described to address these challenges. However, only a few have been evaluated to determine their impact on the performance of students studying clinical neuroscience. Interactive, 2‐hour, self‐directed small‐group interactive clinical case‐based learning sessions were conducted weekly for 4 weeks to integrate concepts learned in the corresponding didactic lectures. Students in the small groups analyzed cases of patients suffering from neurological disease that were based on eight learning objectives that allowed them to evaluate neuroanatomical data and clinical findings before presenting their case analysis to the larger group. Students’ performances on the formative quizzes and summative tests were compared to those of first‐year medical students in the previous year for whom the self‐directed, small‐group interactive clinical sessions were not available. There was a significant improvement in the summative performance of first‐year medical students with self‐directed clinical case learning in the second year (Y2) of teaching clinical neuroscience (P < 0.05) when compared with first‐year students in the first year (Y1) for whom the self‐directed learning approach was not available. Student performance in the formative assessments between Y1 and Y2 was not significantly different (P = 0.803). A target of ≥70% student scoring above 80% in the final summative examination was met. The current study revealed evidence for the impact and educational outcomes of a self‐directed, clinical teaching strategy in a clinical neuroscience curriculum for first‐year medical students. Anat Sci Educ 11: 478–487. © 2017 American Association of Anatomists.  相似文献   

6.
Computer‐aided learning (CAL) is an integral part of many medical courses. The neuroscience course at Oxford University for medical students includes CAL course of neuroanatomy. CAL is particularly suited to this since neuroanatomy requires much detailed three‐dimensional visualization, which can be presented on screen. The CAL course was evaluated using the concept of approach to learning. The aims of university teaching are congruent with the deep approach—seeking meaning and relating new information to previous knowledge—rather than to the surface approach of concentrating on rote learning of detail. Seven cohorts of medical students (N = 869) filled in approach to learning scale and a questionnaire investigating their engagement with the CAL course. The students' scores on CAL‐course‐based neuroanatomy assessment and later university examinations were obtained. Although the students reported less use of the deep approach for the neuroanatomy CAL course than for the rest of their neuroanatomy course (mean = 24.99 vs. 31.49, < 0.001), deep approach for CAL was positively correlated with neuroanatomy assessment performance (r = 0.12, < 0.001). Time spent on the CAL course, enjoyment of it, the amount of CAL videos watched and quizzes completed were each significantly positively related to deep approach. The relationship between deep approach and enjoyment was particularly notable (25.5% shared variance). Reported relationships between deep approach and academic performance support the desirability of deep approach in university students. It is proposed that enjoyment of the course and the deep approach could be increased by incorporation of more clinical material which is what the students liked most. Anat Sci Educ 10: 560–569. © 2017 American Association of Anatomists.  相似文献   

7.
New instructional technologies have been increasingly incorporated into the medical school learning environment, including lecture video recordings as a substitute for live lecture attendance. The literature presents varying conclusions regarding how this alternative experience impacts students' academic success. Previously, a multi‐year study of the first‐year medical histology component at the University of Michigan found that live lecture attendance was positively correlated with learning success, while lecture video use was negatively correlated. Here, three cohorts of first‐year medical students (N = 439 respondents, 86.6% response rate) were surveyed in greater detail regarding lecture attendance and video usage, focusing on study behaviors that may influence histology learning outcomes. Students who reported always attending lectures or viewing lecture videos had higher average histology scores than students who employed an inconsistent strategy (i.e., mixing live attendance and video lectures). Several behaviors were negatively associated with histology performance. Students who engaged in “non‐lecture activities” (e.g., social media use), students who reported being interrupted while watching the lecture video, or feeling sleepy/losing focus had lower scores than their counterparts not engaging in these behaviors. This study suggests that interruptions and distractions during medical learning activities—whether live or recorded—can have an important impact on learning outcomes. Anat Sci Educ 11: 366–376. © 2017 American Association of Anatomists.  相似文献   

8.
Many new methods have contributed to the learning of anatomy, including several interactive methods, increasing the effectiveness of educational programs. The effectiveness of an educational program involving several interactive learning methods such as problem-based learning and reciprocal peer teaching was researched in this study. A quasi-experimental before–after study on three consecutive groups of second-year students at the Grenoble School of Medicine was conducted. The lectures were replaced by an educational program based on the problem-based learning method and reciprocal peer teaching. The first session was dedicated to reading clinical cases illustrating the medical concept, so that the learning objectives for the second session could be set. Then, after viewing digital courses, the second session was dedicated to a synthetic presentation by the students themselves, followed by an interactive summary with the teacher. The analysis of 630 students showed a significant increase in the theory test results for those who took part in the intervention: 9.71 versus 9.19 (β = 0.57, P = 0.036). Moreover, satisfaction was high after the intervention (mean = 4.5/5), and when comparing the two pedagogical approaches the students showed a clear preference for the program implemented with the concepts highlighted such as interactivity, in-depth work, group work, and autonomy. A multifaceted interactive pedagogy program could have a significant impact on the results of the theoretical concepts presented and on satisfaction as well as increased investment by students in learning anatomy.  相似文献   

9.
Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self‐study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three‐dimensional constructs to help students understand complex anatomical regions. Resources are self‐contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self‐study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre‐ and post‐examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module‐related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. Anat Sci Educ 7: 406–416. © 2014 American Association of Anatomists.  相似文献   

10.
运用美国语言学家Oxford所设计的语言学习策略分类问卷调查表(SILL)对广州医学院2005级和2004级本科生、2005级统招研究生以及2005级在职研究生进行了问卷调查。结果发现,医科学生在英语学习过程中有意无意地使用了各种语言学习策略,但对大多数语言学习策略的使用频率为中级,即只是偶然使用。研究结果表明,医学院校在外语教学过程中应加强对学生进行语言学习策略方面的培训工作,使医科学生们能够自觉地运用各种语言学习策略,从而有效地提高英语学习的效率。  相似文献   

11.
Many pre‐health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well‐planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self‐assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co‐enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ 11: 496–509. © 2018 American Association of Anatomists.  相似文献   

12.
Inquiry learning environments increasingly incorporate modelling facilities for students to articulate their research hypotheses and (acquired) domain knowledge. This study compared performance success and scientific reasoning of university students with high prior knowledge (n = 11), students from senior high‐school (n = 10), and junior high‐school (n = 10) with intermediate and low prior knowledge, respectively, in order to reveal domain novices’ need for support in such environments. Results indicated that the scientific reasoning of both groups of high‐school students was comparable to that of the experts. As high‐school students achieved significantly lower performance success scores, their expert‐like behaviour was rather ineffective; qualitative analyses substantiated this conclusion. Based on these findings, implications for supporting domain novices in inquiry learning environments are advanced.  相似文献   

13.
The use of Facebook to support students is an emerging area of educational research. This study explored how a Facebook Page could support Year 2 medical (MBChB) students in preparation for summative anatomy assessments and alleviate test anxiety. Overall, Facebook analytics revealed that in total 49 (19.8% of entire cohort) students posted a comment in preparation for either the first (33 students) or second (34) summative anatomy assessments. 18 students commented in preparation for both. In total, 155 comments were posted, with 83 for the first and 72 for the second. Of the 83 comments, 45 related to checking anatomical information, 30 were requiring assessment information and 8 wanted general course information. For the second assessment this was 52, 14 and 6, respectively. Student perceptions on usage, and impact on learning and assessment preparation were obtained via a five‐point Likert‐style questionnaire, with 119 students confirming they accessed the Page. Generally, students believed the Page was an effective way to support their learning, and provided information which supported their preparation with increases in perceived confidence and reductions in anxiety. There was no difference between gender, except for males who appeared to be significantly less likely to ask a question as they may be perceived to lack knowledge (P < 0.05). This study suggests that Facebook can play an important role in supporting students in preparation for anatomy assessments. Anat Sci Educ 10: 205–214. © 2016 American Association of Anatomists.  相似文献   

14.
Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three‐year experience developing a new Computed Tomography (CT)‐based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the new curriculum, the CT‐based learning system itself, practical examples of visual dissections, and student assessments of the new curriculum. At the heart of this new curriculum is the emphasis on studying anatomy by navigating inside the bodies of various living individuals utilizing a CT viewer. To assess the students’ experience with the new CT‐based learning method, an anonymous questionnaire was administered at the end of the course for three consecutive academic years: 2008/2009, 2009/2010, 2010/2011. Based upon the results, modifications were made to the curriculum in the summers of 2009 and 2010. Results showed that: (1) during these three years the number of students extensively using the CT system quadrupled (from 11% to 46%); (2) students' satisfaction from radiologists involvement increased by 150%; and (3) student appreciation of the CT‐based learning method significantly increased (from 13% to 68%). It was concluded that discouraging results (mainly negative feedback from students) during the first years and a priori opposition from the teaching staff should not weaken efforts to develop new teaching methods in the field of anatomy. Incorporating a new curriculum requires time and patience. Student and staff satisfaction, along with utilization of the new system, will increase with the improvement of impeding factors. Anat Sci Educ 6: 332–341. © 2013 American Association of Anatomists.  相似文献   

15.
Many factors affect students’ learning approaches, including topic conceptions and prior study. This research, undertaken after a first‐semester compulsory subject, explores students’ conceptions of biochemistry and how they approached their studies. Students (n=151) completed an open‐ended survey analysed phenomenographically. Those with cohesive conceptions were found to be more likely to adopt deeper approaches to study than those with fragmented conceptions, a result unaffected by various demographic parameters. Compared with earlier research, a semester of study increased the percentage of students with a cohesive view, with no concomitant change in learning approaches, suggesting that cohesive conceptions are a necessary but not sufficient criterion for deep learning outcomes. Compared with results for a science major subject, more of the students with cohesive conceptions used surface approaches. This may reflect a regression to safe surface approaches when faced with an unfamiliar topic or high total workload driving a strategic approach to learning. It could also reflect a perception that this material is only a tool for later application. The present findings indicate the crucial importance, when university studies begin, of enabling students to build an overarching conception of the topic’s place in professional practice. This concept building should be applied across the entire curriculum to emphasize application and integration of material (key graduate attributes). Improved conceptions may provide crucial motivation for students to achieve deeper learning, especially in these foundation service subjects. These essential changes to the learning context may also better prepare students for increasing self‐directed/life‐long learning.  相似文献   

16.
The implementation of an integrated medical neuroscience course by technologically pivoting an in-person neuroscience course to online using an adaptive blended method may provide a unique approach for teaching a medical neuroscience course during the Covid-19 pandemic. An adaptive blended learning method was developed in response to the requirements necessitated by the Covid-19 pandemic. This model combined pedagogical needs with digital technology using online learning activities to implement student learning in a medical neuroscience course for year one medical students. This approach provided medical students with an individually customized learning opportunity in medical neuroscience. The students had the complete choice to engage the learning system synchronously or asynchronously and learn neuroscience materials at different locations and times in response to the demands required to deal with the pandemic. Students' performance in summative and formative examinations of the adaptive blended learning activities were compared with the previous performance obtained the previous year when the contents of the medical neuroscience course were implemented using the conventional “face-to-face” learning approach. While the cohort of our students in 2019 and 2020 changed, the contents, sessions, volume of material, and assessment were constant. This enabled us to compare the results of the 2019 and 2020 classes. Overall, students' performance was not significantly different between the adaptive blended learning and the in-person approach. More students scored between 70% and 79% during the adaptive blended learning compared with in-class teaching, while more students scored between 80% and 89% during the in-person learning than during the adaptive blended learning. Finally, the percentage of students that scored >90% was not significantly different for both Years 2019 and 2020. The adaptive blended learning approach was effective in enhancing academic performance for high-performing medical students. It also permitted the early identification of underachieving students, thereby serving as an early warning sign to permit timely intervention.  相似文献   

17.
This paper investigates the relationship between learning style, as determined by Kolb's Learning Style Inventory, age and one measure of academic performance in design assignments for two cohorts of first‐ and third‐year architecture students. The paper focuses on the results of a cross‐curriculum learning style survey conducted as part of a project aimed at resolving the learning difficulties of students collaborating in multi‐disciplinary and multi‐cultural team assignments. The research was conducted to determine how learning style differences in heterogeneous teams might be addressed through pedagogy. In light of evidence in student cohorts of learning style changes towards the learning styles of design teachers as students progress through their studies, this paper demonstrates how these changes reflect a statistically significant relationship between learning styles and academic performance in design assignments.  相似文献   

18.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

19.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

20.
Over the years, the role and extent of the basic sciences in medical curricula have been challenged by research on clinical expertise, clinical teachers, and medical students, as well as by the development and diversification of the medical curricula themselves. The aim of this study was to examine how prior knowledge of basic histology and histopathology among students predicts early learning of diagnostic pathology. Participants (N=118, representing 91% of the full student cohort) were medical students at the University of Turku, Finland. Data were collected during two preclinical courses that students attended in their first and second years of medical school. The measurements included tests on biomedical and clinical knowledge and a performance test in diagnostic pathology. Second‐year performance on the diagnostic pathology examinations was predicted by the students' prior knowledge of histology, but not by the students' prior knowledge of histopathology. Although earlier research has demonstrated similar results in studies with shorter longitudinal designs, the present study demonstrates that the effect remains even if there is a considerably long time delay (a year) between the measurements, thus confirming the long‐term value of basic science studies in the preclinical phase. Anat Sci Educ 6: 361–367. © 2013 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号