首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of medical imaging into preclinical anatomy courses is already underway in many medical schools. However, interpretation of two-dimensional grayscale images is difficult and conventional volume rendering techniques provide only images of limited quality. In this regard, a more photorealistic visualization provided by Cinematic Rendering (CR) may be more suitable for anatomical education. A randomized, two-period crossover study was conducted from July to December 2018, at the University Hospital of Erlangen, Germany to compare CR and conventional computed tomography (CT) imaging for speed and comprehension of anatomy. Sixteen students were randomized into two assessment sequences. During each assessment period, participants had to answer 15 anatomy-related questions that were divided into three categories: parenchymal, musculoskeletal, and vascular anatomy. After a washout period of 14 days, assessments were crossed over to the respective second reconstruction technique. The mean interperiod differences for the time to answer differed significantly between the CR–CT sequence (−204.21 ± 156.0 seconds) and the CT–CR sequence (243.33 ± 113.83 seconds; P < 0.001). Overall time reduction by CR was 65.56%. Cinematic Rendering visualization of musculoskeletal and vascular anatomy was higher rated compared to CT visualization (P < 0.001 and P = 0.003), whereas CT visualization of parenchymal anatomy received a higher scoring than CR visualization (P < 0.001). No carryover effects were observed. A questionnaire revealed that students consider CR to be beneficial for medical education. These results suggest that CR has a potential to enhance knowledge acquisition and transfer from medical imaging data in medical education.  相似文献   

2.
The increasing number of digital anatomy teaching software packages challenges anatomy educators on how to best integrate these tools for teaching and learning. Realistically, there exists a complex interplay of design, implementation, politics, and learning needs in the development and integration of software for education, each of which may be further amplified by the somewhat siloed roles of programmers, faculty, and students. LINDSAY Presenter is newly designed software that permits faculty and students to model and manipulate three‐dimensional anatomy presentations and images, while including embedded quizzes, links, and text‐based content. A validated tool measuring impact across pedagogy, resources, interactivity, freedom, granularity, and factors outside the immediate learning event was used in conjunction with observation, field notes, and focus groups to critically examine the impact of attitudes and perceptions of all stakeholders in the early implementation of LINDSAY Presenter before and after a three‐week trial period with the software. Results demonstrate that external, personal media usage, along with students' awareness of the need to apply anatomy to clinical professional situations drove expectations of LINDSAY Presenter. A focus on the software over learning, which can be expected during initial orientation, surprisingly remained after three weeks of use. The time‐intensive investment required to create learning content is a detractor from user‐generated content and may reflect the consumption nature of other forms of digital learning. Early excitement over new technologies needs to be tempered with clear understanding of what learning is afforded, and how these constructively support future application and integration into professional practice. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

3.
Understanding the three‐dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un‐embalmed donor was scanned through high‐resolution computed tomography. The scan data underwent segmentation and post‐processing and a range of 3D‐printed anatomical models were produced. A four‐stage mixed‐methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post‐test to assess change in learner knowledge following 3D‐printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D‐printed models in small‐group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D‐image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D‐printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D‐printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection‐based teaching. Anat Sci Educ 11: 44–53. © 2017 American Association of Anatomists.  相似文献   

4.
Graduating physicians in all subspecialties have an increased need for competency in radiology, particularly since the use of diagnostic imaging continues to grow. To integrate the teaching of radiology with anatomy during the first year of medical school at Howard University, a novel approach was developed to overcome the limitations of resources including funding, faculty, and curricular time. The resulting program relies on self‐study and peer‐to‐peer interactions to develop proficiency at manipulating free versions of medical image viewer software (using the DICOM standard), identifying normal anatomy in medical images, and applying critical thinking skills to understand common clinical conditions. An effective collaborative relationship between a radiologist and anatomist was necessary to develop and implement the program of anatomic–radiographic instruction which consists of five tiers: (1) initial exposure to anatomy through dissection which provides a foundation of knowledge; (2) study of annotated radiographs from atlases; (3) a radiology quiz open to group discussions; (4) small group study of clinical cases with diagnostic images; and (5) radiographic tests. Students took all quizzes and tests by working from image datasets preloaded on their personal computers, mimicking the approach by which radiologists analyze medical images. In addition to stimulating student support of a new teaching initiative, the strengths of Howard's program are that it can be introduced into an existing preclinical curriculum in almost any medical school with minimal disruption, it requires few additional resources to implement and run, and its design is consistent with the principles of modern education theory. Anat Sci Educ 11: 196–206. © 2017 American Association of Anatomists.  相似文献   

5.
The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three‐dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not been previously studied in detail. This study investigated whether 3D stereoscopic models created from computed tomographic angiography (CTA) data were efficacious teaching tools for the head and neck vascular anatomy. The test subjects were first year medical students at the University of Mississippi Medical Center. The assessment tools included: anatomy knowledge tests (prelearning session knowledge test and postlearning session knowledge test), mental rotation tests (spatial ability; presession MRT and postsession MRT), and a satisfaction survey. Results were analyzed using a Wilcoxon rank‐sum test and linear regression analysis. A total of 39 first year medical students participated in the study. The results indicated that all students who were exposed to the stereoscopic 3D vascular models in 3D learning sessions increased their ability to correctly identify the head and neck vascular anatomy. Most importantly, for students with low‐spatial ability, 3D learning sessions improved postsession knowledge scores to a level comparable to that demonstrated by students with high‐spatial ability indicating that the use of 3D stereoscopic models may be particularly valuable to these students with low‐spatial ability. Anat Sci Educ 10: 34–45. © 2016 American Association of Anatomists.  相似文献   

6.
This article illustrates details of the planning, building, and improvement phases of a cost‐efficient, full‐dissection gross anatomy laboratory on a campus of an historically design‐centric university. Special considerations were given throughout the project to the nature of hosting cadavers in a building shared amongst all undergraduate majors. The article addresses these needs along with discussion of relevant furnishings and infrastructure that went into the creation of a fully outfitted gross anatomy laboratory (ten cadavers) completed within a significantly constrained timeline and $210,000 budget. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

7.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

8.
It has been noted by staff at the Faculty of Health Sciences, Stellenbosch University that medical students neglect the study of surface anatomy during dissection. This study reports on the novel use of Lodox® Statscan® images in anatomical education, particularly the teaching of surface anatomy. Full body digital X‐ray images (Lodox Statscan) of each cadaver (n = 40) were provided to second year medical students. During dissection students were asked to visualize landmarks, organs, and structures on the digital X‐ray and their cadaver, as well as palpate these landmarks and structures on themselves, their colleagues, and the cadaver. To stimulate student engagement with surface anatomy, dissection groups were required to draw both the normal and actual position of organs on a laminated image provided. The accuracy of the drawings was subsequently assessed and students were further assessed by means of practical identification tests. In addition, students were asked to complete an anonymous questionnaire. A response rate of 79% was obtained for the student questionnaire. From the questionnaire it was gathered that students found the digital X‐ray images beneficial for viewing most systems' organs, except for the pelvic organs. Although it appears that students still struggle with the study of surface anatomy, most students believed that the digital X‐rays were beneficial to their studies and supported their continued use in the future. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

9.
Visualization of the complex courses of the cranial nerves by students in the health‐related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two‐dimensional (2D) illustrations alone. Three‐dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life?, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre‐healthcare professional students in gross anatomy courses at both institutions and student feedback is included. Anat Sci Educ 7: 469–478. © 2014 American Association of Anatomists.  相似文献   

10.
11.
It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver dissection to gain a better understanding of 3D human anatomy and diagnostic radiology. Students used handheld digital imaging and communications in medicine viewers at the bench‐side (OsiriX on iPod touch or iPad), which enabled “pixel‐to‐tissue” direct comparisons of CT images and cadavers. Students had lectures and workshops on diagnostic radiology, and they completed study assignments where they discussed findings in the anatomy laboratory compared with CT radiology findings. This teaching method for gross and radiological anatomy was used beginning in 2009, and it yielded strongly positive student perspectives and significant improvements in radiology skills in later clinical courses. Anat Sci Educ 7: 438–449. © 2014 American Association of Anatomists.  相似文献   

12.
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm3) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi‐layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65–72. © 2017 American Association of Anatomists.  相似文献   

13.
Three-dimensional printing (3DP) technology has been increasingly applied in health profession education. Yet, 3DP anatomical models compared with the plastinated specimens as learning scaffolds are unclear. A randomized-controlled crossover study was used to evaluate the objective outcomes of 3DP models compared with the plastinated specimens through an introductory lecture and team study for learning relatively simple (cardiac) and complex (neck) anatomies. Given the novel multimaterial and multicolored 3DP models are replicas of the plastinated specimens, it is hypothesized that 3DP models have the same educational benefits to plastinated specimens. This study was conducted in two phases in which participants were randomly assigned to 3DP (n = 31) and plastinated cardiac groups (n = 32) in the first phase, whereas same groups (3DP, n = 15; plastinated, n = 18) used switched materials in the second phase for learning neck anatomy. The pretest, educational activities and posttest were conducted for each phase. Miller's framework was used to assess the cognitive outcomes. There was a significant improvement in students' baseline knowledge by 29.7% and 31.3% for Phase 1; 31.7% and 31.3% for Phase 2 plastinated and 3DP models. Posttest scores for cardiac (plastinated, 3DP mean ± SD: 57.0 ± 13.3 and 60.8 ± 13.6, P = 0.27) and neck (70.3 ± 15.6 and 68.3 ± 9.9, P = 0.68) phases showed no significant difference. In addition, no difference observed when cognitive domains compared for both cases. These results reflect that introductory lecture plus either the plastinated or 3DP modes were effective for learning cardiac and neck anatomy.  相似文献   

14.
A technology enhanced learning and teaching (TELT) solution, radiological anatomy (RA) eLearning, composed of a range of identification‐based and guided learning activities related to normal and pathological X‐ray images, was devised for the Year 1 nervous and locomotor course at the Faculty of Medicine, University of Southampton. Its effectiveness was evaluated using a questionnaire, pre‐ and post‐tests, focus groups, summative assessment, and tracking data. Since introduced in 2009, a total of 781 students have used RA eLearning, and among them 167 Year 1 students in 2011, of whom 116 participated in the evaluation study. Students enjoyed learning (77%) with RA eLearning, found it was easy to use (81%) and actively engaged them in their learning (75%), all of which were associated to the usability, learning design of the TELT solution and its integration in the curriculum; 80% of students reported RA eLearning helped their revision of anatomy and 69% stated that it facilitated their application of anatomy in a clinical context, both of which were associated with the benefits offered by the learning and activities design. At the end of course summative assessment, student knowledge of RA eLearning relevant topics (mean 80%; SD ±16) was significantly better as compared to topics not relevant to RA eLearning (mean 63%; SD ±15) (mean difference 18%; 95% CI 15% to 20%; P < 0.001). A well designed and integrated TELT solution can be an efficient method for facilitating the application, integration, and contextualization of anatomy and radiology to create a blended learning environment. Anat Sci Educ 7: 350–360. © 2013 American Association of Anatomists.  相似文献   

15.
Utilizing reality anatomy such as dissection and demonstrating using cadavers has been described as a superior way to create meaning. The chemicals used to embalm cadavers differentially alter the tissue of the human body, which has led to the usage of different processes along the hard to soft‐fixed spectrum of preserved cadavers. A questionnaire based approach was used to gain a better insight into the opinion of anatomists on the use of preserved cadavers for the teaching of human anatomy. This study focused on anatomy teachers in the United Kingdom and Ireland. From the 125 participating anatomists, 34.4% were medically qualified, 30.4% had a PhD in a non‐anatomical science and 22.4% had a PhD in an anatomical science, these figures include ten anatomists who had combinations of MD with the two other PhD qualifications. The main findings from the questionnaire were that 61.6% of participants agreed that hard‐fixed formalin cadavers accurately resemble features of a human body whereas 21.6% disagreed. Moreover, anatomists rated the teaching aids on how accurately they resemble features of the human body as follows: plastic models the least accurate followed by plastinated specimens, hard fixed cadavers; soft preserved cadavers were considered to be the most accurate when it comes to resembling features of the human body. Though anatomists considered soft preserved cadavers as the most accurate tool, further research is required in order to investigate which techniques or methods provide better teaching tool for a range of anatomical teaching levels and for surgical training. Anat Sci Educ 10: 137–143. © 2016 American Association of Anatomists.  相似文献   

16.
Competitive game-based learning within Second Life enables effective teaching of basic radiological anatomy and radiological signs to medical students, with good acceptance and results when students participate voluntarily, but unknown in a compulsory context. The objectives of this study were to reproduce a competitive online game based on self-guided presentations and multiple-choice tests in a mandatory format, to evaluate its development and student perceptions compared to a voluntary edition in 2015 (N = 90). In 2016 and 2017, respectively, 191 and 182 third-year medical students participated in the game as a mandatory course activity. The mean (±SD) score of the game was 74.7% (±19.5%) in 2015, 71.2% (±21.5%) in 2016, and 67.5% (±21.5%) in 2017 (P < 0.01). Participants valued positively the organization and educational contents but found the virtual world less attractive and the game less interesting than in the voluntary edition. The experience globally was rated with 8.2 (±1.5), 7.8 (±1.5), and 7.1 (±1.7) mean points (±SD) in a ten-point scale, in the 2015, 2016, and 2017 editions, respectively (P < 0.05). Competitive learning games within virtual worlds like Second Life have great learning potential in radiology, but the mean score in the game decreased, acceptance of virtual world technology was lower, and opinion about the game was worse with a compulsory participation, and even worse when dropouts were not allowed. Under the conditions in which this study was conducted, learning games in three-dimensional virtual environments should be voluntary to maintain adequate motivation and engagement of medical students.  相似文献   

17.
Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three‐year experience developing a new Computed Tomography (CT)‐based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the new curriculum, the CT‐based learning system itself, practical examples of visual dissections, and student assessments of the new curriculum. At the heart of this new curriculum is the emphasis on studying anatomy by navigating inside the bodies of various living individuals utilizing a CT viewer. To assess the students’ experience with the new CT‐based learning method, an anonymous questionnaire was administered at the end of the course for three consecutive academic years: 2008/2009, 2009/2010, 2010/2011. Based upon the results, modifications were made to the curriculum in the summers of 2009 and 2010. Results showed that: (1) during these three years the number of students extensively using the CT system quadrupled (from 11% to 46%); (2) students' satisfaction from radiologists involvement increased by 150%; and (3) student appreciation of the CT‐based learning method significantly increased (from 13% to 68%). It was concluded that discouraging results (mainly negative feedback from students) during the first years and a priori opposition from the teaching staff should not weaken efforts to develop new teaching methods in the field of anatomy. Incorporating a new curriculum requires time and patience. Student and staff satisfaction, along with utilization of the new system, will increase with the improvement of impeding factors. Anat Sci Educ 6: 332–341. © 2013 American Association of Anatomists.  相似文献   

18.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

19.
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation.  相似文献   

20.
This study was designed to determine whether an interactive three-dimensional presentation depicting liver and biliary anatomy is more effective for teaching medical students than a traditional textbook format presentation of the same material. Forty-six medical students volunteered for participation in this study. Baseline demographic information, spatial ability, and knowledge of relevant anatomy were measured. Participants were randomized into two groups and presented with a computer-based interactive learning module comprised of animations and still images to highlight various anatomical structures (3D group), or a computer-based text document containing the same images and text without animation or interactive features (2D group). Following each teaching module, students completed a satisfaction survey and nine-item anatomic knowledge post-test. The 3D group scored higher on the post-test than the 2D group, with a mean score of 74% and 64%, respectively; however, when baseline differences in pretest scores were accounted for, this difference was not statistically significant (P = 0.33). Spatial ability did not statistically significantly correlate with post-test scores for the 3D group or the 2D group. In the post-test satisfaction survey the 3D group expressed a statistically significantly higher overall satisfaction rating compared to students in the 2D control group (4.5 versus 3.7 out of 5, P = 0.02). While the interactive 3D multimedia module received higher satisfaction ratings from students, it neither enhanced nor inhibited learning of complex hepatobiliary anatomy compared to an informationally equivalent traditional textbook style approach. .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号