首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Measurements are presented of the speed at which six different rods could be swung by four male students. Three of the rods had the same mass but their swing-weight (i.e. moment of inertia) differed by large factors. The other three rods had the same swing-weight but different masses. Our primary objective was to quantify the effects of mass and swing-weight on swing speed. The result has a direct bearing on whether baseball, tennis, cricket and golf participants should choose a heavy or light implement to impart maximum speed to a ball. When swinging with maximum effort, swing speed (V) was found to decrease as swing-weight (I o) increased, according to the relation V?=?C/I o n , where C is a different constant for each participant and n?=?0.27 when I o >?0.03 kg?·?m2. Remarkably similar results were obtained previously with softball bats (where n?=?0.25) and golf clubs (where n?=?0.26). Swing speed remained approximately constant as swing mass increased (when keeping swing-weight fixed). The implications for racket power are discussed.  相似文献   

2.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

3.
Previous studies on the kinematics of the golf swing have mainly focused on group analysis of male golfers of a wide ability range. In the present study, we investigated gross body kinematics using a novel method of analysis for golf research for a group of low handicap female golfers to provide an understanding of their swing mechanics in relation to performance. Data were collected for the drive swings of 16 golfers using a 12-camera three-dimensional motion capture system and a stereoscopic launch monitor. Analysis of covariance identified three covariates (increased pelvis-thorax differential at the top of the backswing, increased pelvis translation during the backswing, and a decrease in absolute backswing time) as determinants of the variance in clubhead speed (adjusted r (2) = 0.965, P < 0.05). A significant correlation was found between left-hand grip strength and clubhead speed (r = 0.54, P < 0.05) and between handicap and clubhead speed (r = -0.612, P < 0.05). Flexibility measures showed some correlation with clubhead speed; both sitting flexibility tests gave positive correlations (clockwise: r = 0.522, P < 0.05; counterclockwise: r = 0.711, P < 0.01). The results suggest that there is no common driver swing technique for optimal performance in low handicap female golfers, and therefore consideration should be given to individual swing characteristics in future studies.  相似文献   

4.
Skilled golfers are reported to be more flexible than lesser able golfers, which may assist in increased x-factor (shoulder–pelvis separation) at the top of the backswing. However, it is unknown if increased flexibility produces faster clubhead speed. The aim of this study was to investigate the correlations amongst trunk flexibility and x-factor, as well as the association between flexibility and clubhead speed in low handicap golfers. Fifteen low handicap male golfers who displayed a modern swing, had their trunk static anatomical end-range of motion (flexibility) and driver swing kinematics were measured. Although Pearson correlations revealed trunk extension and lateral bending were moderately related to x-factor, axial rotation flexibility was not. A generalised linear model (GLM) reported three axial rotation flexibility variables, and six golf swing kinematic variables were associated with faster clubhead speed. The Pearson correlation results suggest that skilled golfers who have increased axial rotation flexibility do not necessarily utilise it to increase x-factor, and the GLM results support the importance of multisegment flexibility and interaction for improving golf performance with skilled golfers.  相似文献   

5.
Golf, as with most complex motor skills, requires multiple different brain functions, including attention, motor planning, coordination, calculation of timing, and emotional control. In this study we assessed the correlation between swing components and brain connectivity from the cerebellum to the cerebrum. Ten female golf players and 10 age-matched female controls were recruited. In order to determine swing consistency among participants, the standard deviation (SD) of the mean swing speed time and the SD of the mean swing angle were assessed over 30 swings. Functional brain connectivity was assessed by resting state functional MRI. Pro-golfers showed greater positive left cerebellum connectivity to the occipital lobe, temporal lobe, parietal lobe and both frontal lobes compared to controls. The SD of play scores was positively correlated with the SD of the impact angle. Constant swing speed and back swing angle in professional golfers were associated with functional connectivity (FC) between the cerebellum and parietal and frontal lobes. In addition, the constant impact angle in professional golfers was associated with improved golf scores and additional FC of the thalamus.  相似文献   

6.
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.  相似文献   

7.
A common belief in the golf community is that a lighter shaft allows the golfer to swing the club faster. From a mechanical point of view, reducing the mass of the shaft would result in a faster swing. However, a golfer is not a purely mechanical system, and so it is simplistic to assume that identical loads will be applied when swinging different clubs. Therefore, the purpose of this study was to test the hypothesis that golfers behave similar to a mechanical model when swinging clubs of varying mass. A torque driven model estimated the effects caused by the addition of 22?g to the shaft. Twelve golfers hit balls with a standard driver as well as a driver fitted with the same 22?g increase in mass. Club kinematics were collected with a high-speed motion capture system. The model predicted a 1.7?% lower club head speed for the club with additional mass. One subject showed a similar reduction (1.4?%), but one subject showed an increase in club head speed by 3.0?%. Ten subjects did not show any significant differences. These results suggest that golfers do not respond to changes in club mass in a mechanically predictable way.  相似文献   

8.
Abstract

Some golf equipment manufacturers produce matched sets of golf clubs using an empirical method based on first moments of mass as well as shaft stiffness, whereas others claim to match sets on the basis of moment of inertia and dynamic considerations of shaft stiffness. This paper considers the significance of the mass distribution feature of club matching with regard to the parameters relating to physical exertion by the golfer. It is shown that dynamic considerations require a mass variation through the set almost identical to the variation prescribed by static swing weighting, and that conventionally static balanced golf clubs differ in mass by less than five percent from that suggested using a dynamic balance. It is also shown that the maximum driving force is relatively the same for a specific golfer using a variety of golf clubs but that the driving forces of the professionals were higher than those recorded for the amateurs.  相似文献   

9.
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 ± 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p ≤ 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7–66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.  相似文献   

10.
The purpose of this study was to construct and evaluate the reliability of an apparatus for testing golf putters with respect to distance and direction deviation at different impact points on the clubface. An apparatus was constructed based on the pendulum principle that allowed putter golf clubs to swing at different speeds. The mean speed of the club head before ball impact, and of the ball after impact, was calculated from time measurements with photocells. A pin profile rig was used to determine the directional deviation of the golf ball. Three different putters were used in the study, two that are commercially available (toe-heel weighted and mallet types) and one specially made (wing-type) putter. The points of impact were the sweet spot (as indicated by the manufacturer's aim line), and 1, 2 and 3 cm to the left and right of the sweet spot. Calculation of club head speed before impact, and of ball speed after impact (proportional to distance), showed errors < or = 0.5% of interval duration. The variability in ball impacts was tested by measuring time and direction deviations during 50 impacts on the same ball. The mean duration (+/- s) after ball impact in the test interval (1.16 m long) was 206 (0.8) ms and the standard deviation in the perpendicular spreading of the balls in relation to the direction of the test interval was 0.005 m. A test-retest of one putter on two consecutive days after remounting of the putter on the test apparatus showed less than 1% difference in distance deviation. We conclude that the test apparatus enables a precise recording of distance and direction deviation in golf putters as well as comparisons between different putters. The apparatus and set-up can be used in the laboratory as well as outdoors on the putting green.  相似文献   

11.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

12.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

13.
Pelvis-thorax coordination has been recognised to be associated with swing speed. Increasing angular separation between the pelvis and thorax has been thought to initiate the stretch shortening cycle and lead to increased clubhead speed. The purpose of this study was to determine whether pelvis-thorax coupling played a significant role in regulating clubhead speed, in a group of low-handicap golfers (mean handicap = 4.1). Sixteen participants played shots to target distances determined based on their typical 5- and 6-iron shot distances. Half the difference between median 5- and 6-iron distance for each participant was used to create three swing effort conditions: “minus”, “norm”, and “plus”. Ten shots were played under each swing effort condition using both the 5-iron and 6-iron, resulting in six shot categories and 60 shots per participant. No significant differences were found for X-factor for club or swing effort. X-factor stretch showed significant differences for club and swing effort. Continuous relative phase (CRP) results mainly showed evidence of the stretch shortening cycle in the downswing and that it was more pronounced late in the downswing as swing effort increased. Substantial inter-individual CRP variability demonstrated the need for individual analyses when investigating coordination in the golf swing.  相似文献   

14.
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60–67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.  相似文献   

15.
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < ?0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.  相似文献   

16.
The swing speed of the bat is one of the most important factors affecting the hit-ball speed. Most field studies tend to focus on measuring ball speed, which is easier to measure and quantify than bat speed. For this reason, relatively little data exist describing bat motion in field conditions. The following describes a relatively large swing speed field study involving bats of the same model with nearly constant weight and varying inertia. The study was conducted using right-handed batters on a regulation outdoor field with a live pitcher. Swing speed was measured by tracking markers on the bat with two high-speed video cameras so that the bat markers could be traced in three-dimensional space. The ball motion was tracked using the same high-speed video cameras and a three-dimensional Doppler radar system. Bat swing speed was observed to be proportional to the batter skill level and the normalised swing speed increased with decreasing bat inertia. The bat centre of rotation during impact was close to the knob of the bat. The bats were tested under controlled laboratory conditions using a standardised performance test. The field and laboratory results showed good agreement including the hit-ball speed and the subtle effect of bat inertia on the maximum performance location. The vibrational response of the bats was considered using modal analysis. The maximum performance location was correlated with the node of the first vibrational mode.  相似文献   

17.
The purpose of this paper was to examine whether the ball position and wrist action (different types of torque application) could be optimised to increase the horizontal golf club head speed at impact with the ball. A two-dimensional double pendulum model of the golf downswing was used to determine to what extent the wrist action affected the club head speed in a driver, and how this affected the optimum ball position. Three different patterns of wrist actions (negative, positive, and negative-positive torque at the wrist) were investigated; and two criteria (maximum and impact criteria) were used to assess their effectiveness in terms of the maximum horizontal club head speed, and the club head speed as the shaft becomes vertical when viewed ‘face-on’. The simulation results indicated that the horizontal club head speed at impact could be increased by these patterns of wrist actions and the optimum ball position could be determined by the impact criterion. Based on the analysis of the energy flow from the input joints of shoulder and wrist to the arm and club head, the way the wrist action affects the club head speed has been discussed. The sensitivity of the results to small changes in model parameter values and initial conditions was investigated. The results were also examined under different torque patterns.  相似文献   

18.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

19.
Knee injuries in golf comprise approximately 8% of all injuries, and are considered to result from overuse, technical faults or a combination of those factors. This review examines factors involved in injury, including the structure of the knee joint, kinematics and kinetics of the golf swing, forces sustained by knee joint structures and the potential for joint injury as well as injury prevention strategies. The golf swing generates forces and torques which tend to cause internal or external rotation of the tibia on the femur, and these are resisted by the knee ligaments and menisci. Research has shown that both maximum muscle forces and the forces sustained during a golf swing are less than that required to cause damage to the ligaments. However, the complex motion of the golf swing, involving both substantial forces and ranges of rotational movement, demands good technique if the player is to avoid injuring their knee joint. Most knee injury in golf is likely related to joint laxity, previous injuries or arthritis, and such damage may be exacerbated by problems in technique or overuse. In addition to appropriate coaching, strategies to remedy discomfort include specific exercise programmes, external bracing, orthotics and equipment choices.  相似文献   

20.
The purpose of this study was to compare the electromyography (EMG) patterns of the thoracic and lumbar regions of the erector spinae (ES) muscle during the golf swing whilst using four different golf clubs. Fifteen right-handed male golfers performed a total of twenty swings in random order using the driver, 4-iron, 7-iron and pitching-wedge. Surface EMG was recorded from the lead and trail sides of the thoracic and lumbar regions of the ES muscle (T8, L1 and L5 lateral to the spinous-process). Three-dimensional high-speed video analysis was used to identify the backswing, forward swing, acceleration, early and late follow-through phases of the golf swing. No significant differences in muscle-activation levels from the lead and trail sides of the thoracic and lumbar regions of the ES muscle were displayed between the driver, 4-iron, 7-iron and pitching-wedge (P > 0.05). The highest mean thoracic and lumbar ES muscle-activation levels were displayed in the forward swing (67–99% MVC) and acceleration (83–106% MVC) phases of the swing for all clubs tested. The findings from this study show that there were no significant statistical differences between the driver, 4-iron, 7-iron and pitching-wedge when examining muscle activity from the thoracic and lumbar regions of the ES muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号