首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从近几年全国高考新课程试卷来看 ,利用导数的相关知识来分析和解决问题已成为高考命题的一个热点 .以下举例说明导数法的基本应用 .一、研究函数的单调区间【例 1】  ( 2 0 0 3年高考新课程卷 )设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .分析 :f′(x) =12x-1x+a(x >0 ) ,当a >0 ,x>0时 ,f′(x) >0 x2 + ( 2a-4 )x +a2 >0f′(x) <0 x2 + ( 2a -4 )x+a2 <0( 1 )当a >1时 ,对所有x>0都有f′(x)>0 ,此时f(x)在 ( 0 ,+∞ )上单调递增 .( 2 )当a =1时 ,对x≠ 1 ,有f′(x) >0 ,f(x)在 ( 0 ,1 )内单调递增 ,在 ( 1 ,+∞ )内…  相似文献   

2.
根据一次函数的图象及单调性,容易推得如下结论成立:一次函数f(x)=kx+b(k≠0),当x∈[m,n]时,1f(x)>0f(m)>0且f(n)>0;2f(x)<0f(m)<0且f(n)<0;3f(x)=0f(m)f(n)≤0.有些数学问题,可根据题意转化为关于某一变量的一次函数,应用上述结论求解,简捷、明了.例1对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求实数x的取值范围.解:不等式x2+px>4x+p-3即(x-1)p+x2-4x+3>0令f(p)=(x-1)p+x2-4x+3视它为关于p的一次函数,显然x≠1.由于0≤p≤4,所以由f(p)>0恒成立可得f(0)>0且f(4)>0,即f(0)=x2-4x+3>0f(4)=4(x-1)+x2-4x+3>0.解之得x<-1或x>3.例2…  相似文献   

3.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

4.
例1 当x>0时,证明下列不等式: (1)x5-4/3x3+x>0;(2)x5+4≥5x. 证明(1)设f(x)=x5-4/3x3+x,则f'(x)=5x4-4x2+1 =5(x2-2/5)2+1/5>0,所以f(x)在(0,+∞)上是增函数,于是当x>0时,f(x)>f(0)=0,  相似文献   

5.
导数是高中数学新教材引入的新内容 ,它为函数的研究开辟了新途径 ,从而成为高考的新热点 .下面举例说明 ,希望能够引起重视 .【例 1】  ( 2 0 0 3年高考题 )设a>0 ,求函数 f(x) =x-ln(x+a) (x∈ ( 0 ,+∞ ) )的单调区间 .解析 :求导得 f′(x) =12x -1x +a(x >0 ) .据题设 ,a >0 ,x >0 ,于是f′(x) >0 x2 +( 2a -4 )x+a2 >0 ,f′(x) <0 x2 +( 2a-4 )x +a2 <0 .因二次三项式x2 +( 2a -4 )x+a2 的判别式Δ =( 2a -4 ) 2 -4a2 =16( 1-a) ,∴ ( 1)当a >1时 ,对所有x >0 ,有x2 +( 2a -4 )x+a2 >0 ,即 f′(x) >0 ,此时 f(x)在 ( 0 ,+∞ )内单调…  相似文献   

6.
不等式恒成立 ,求参数的取值范围”是不等式中一大题型 ,因不等式的千姿百态 ,因此常令学生不知如何着手解决 ,本文介绍处理这类问题的两大思想方法 .1 函数思想若 f (x) >0 (或 f (x) <0 )在区间 A上恒成立 ,则只需 f (x) min >0 (或 f (x) m ax <0 ) .说明 :若 f (x) >0 (或 f (x) <0 )能分离变量化为 :g(a) 2时 ,不等式 x2 + ax + 8>0恒成立 ,求 a的取值范围 .解法 1 :令 f (x) =x2 + ax + 8,当 -a2 ≤ 2即 a≥ -4时 ,f (x) >2 2 +2 a + 8=1 2 + 2 a.由题意有 :2 a + 1 2≥ 0…  相似文献   

7.
恒不等式问题,往往是把代数、几何、三角有机地结合起来,是近几年数学高考、竞赛中考查的热点,而学生对此类问题感到比较困难.为此,特举以下例子来探讨它的几种解法.一、变元转换法例1设g(x)=(log2x)2+(t-2)log2x-t+1,若在t[-2,2]时,g(x)>0恒成立,求x的取值范围.解p(t)=(log2x-1)t+(log2x)2-2log2x+1,将问题转化成当t眼-2,2演时,p(t)>0,∴P(-2)>0熏P(2)>0 熏即-2(log2x-1)+穴log2x)2-2log2x+1>0熏2(log2x-1雪+(log2x)2-2log2x+1>0 .故08.二、分离参数,最值转换法例2若f(x)=1+2x+3x+…+穴n-1雪x+nx·m姨,其中mR,nN,且n≥2…  相似文献   

8.
1.定义在R+上的函数f(x)满足如下条件:①存在x0>1,使得f(x0)≠0;②对任意的实数b,有:f(xb)≠bf(x).求证:(1)对一切x>1,均有f(x)≠0;(2)当a>2时,有f(a-1)f(a+1)<[f(a]2.2.已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf2(x)>f(x)在x>0时恒成立.(1)求证:函数g(x)=f(x)/x在(0,+∞)上是增函数;(2)求证:当x1>0,x2>0时,有f(x1+x2)>f(x1)+f(x2);(3)已知不等式1n(1+x)-1且x≠0时恒成立,求证:1/221n22=YSW2006.12编辑/刘鹏原创题库43  相似文献   

9.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

10.
不等式     
基础篇 课时一 不等式的性质疑难解析例 1  ( 1)已知 x∈ R,比较 x6 + 1与 x4 + x2 的大小 .( 2 )比较下列两组数的大小 .( A) 1999- 1998与 1998- 1997.( B) 2 0 0 4 - 2 0 0 3与 2 0 0 3- 2 0 0 2 .策略 采用作差法或作商法比较大小 .解 :( 1) ( x6 + 1) - ( x4 + x2 )=x6 - x4 - x2 + 1=x4( x2 - 1) - ( x2 - 1)=( x2 - 1) ( x4 - 1) =( x2 - 1) 2 ( x2 + 1) .当 x =± 1时 ,x6 + 1=x4 + x2 ,当 x≠± 1时 ,x6 + 1>x4 + x2 .( 2 ) 1999- 19981998- 1997=1998+ 19971999+ 1998.显然 1998+ 1997<1999+ 1998.∴ 1999- 19981998- 1997<…  相似文献   

11.
重视变式训练 激活思维能力--一类不等式问题的统一解法   总被引:1,自引:0,他引:1  
1 问题的出现已知x、y∈(0 ,+∞) ,且x+2 y=1,求1x +1y的最小值.学生甲:∵x >0 ,y>0x +1x ≥2 ,2 y+1y ≥2 2 ,∴x+2 y+1x +1y ≥2 +2 2 .∵x +2 y=1,∴1x +1y ≥1+2 2故1x +1y 的最小值为1+2 2 .学生乙:∵x >0 ,y>01=x+2 y≥2 x·2 y,∴xy≤18.因此 1x +1y ≥2 1xy ≥2 8=4 2 .故1x +1y 的最小值为4 2 .以上是学生解这道题目时的两种典型错解,错误的根源在于多次使用了均值不等式,而等号不能同时取到.2 问题的解决本题的条件是正数x、y的一次齐次式等于常数,即x+2 y=1,要求最小值的式子的分母是关于x和y的一次多项式,如果能把1x +1y 化…  相似文献   

12.
“求证 :| x + 1/x|≥ 2 ( x≠ 0 ) .”(人教社高中《代数》(下册 )第 3 0页第 1 1题 )这是训练基本不等式的一个典型题目 ,但是许多学生将其错误地理解成“只要 x≠ 0 ,就能保证 | x + 1/x|≥ 2 .”文 [1 ]举出的反例说明 ,当 x是虚数时 ,可能 | x + 1x| <2 .本文在复数范围内给出 | x + 1/x| >2 (或| x + 1x| =2 ,或 | x + 1/x| <2 )这类关系成立的一个充要条件 .定理 1 :设 z∈ C\{0 } ,m∈ R+,则| z + m2z| <2 m | z + mi| >2 m| z -mi| <2 m  或 | z + mi| <2 m| z -mi| >2 m      ( 1 )| z + m2z| =2 m | z + mi| =2 m  …  相似文献   

13.
如何确定恒成立或有解的不等式中参数的范围是一个难点 ,如果能将参数分离出来 ,再运用有关的函数方程等知识可以较好解决 .下面分情况说明 .一、a 0在 | x|≤ 2时恒成立 ,求 m的范围 .解 :原不等式等价于 ( x2 - x + 1) m 0 ,m f ( x…  相似文献   

14.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

15.
一元三次函数f(x) =ax3+bx2 +cx+d的图象可分为两类 :一类是在整个定义域内是单调的 ,无极值 ,其形状与 f(x) =±x3类似 .另一类是在整个定义域内有 3个单调区间(两增一减或两减一增 ) ,必有一个极大值和一个极小值 .具体分析如下 :设方程 f′(x) =3ax2 + 2bx +c =0的判别式为Δ ,Δ >0时方程的两实根记为x1 ,x2 (x1 0 ,Δ >0时 ,函数的单调增区间为 (-∞ ,x1 ) ,(x2 ,+∞ ) ,单调减区间为[x1 ,x2 ] ,在x1 处取得极大值 ,在x2 处取得极小值 .图象如图 1,呈倒“S” .(2 )当a >0 ,Δ≤ 0时 ,函数在 (-∞ ,+∞ )上单调递增 ,无…  相似文献   

16.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
《数学通报》2 0 0 2年 8月号问题 1 388为 :已知 x>0 ,y>0 ,且 x+ y=1 ,求证 :( x + y ) ( 11 + x+ 11 + y)≤ 4 33.( 1 )本文旨在给出不等式 ( 1 )左式的下界估计 .定理 若 x>0 ,y>0 ,且 x + y=1 ,则( x + y ) ( 11 + x+ 11 + y) >1 +22 . ( 2 )证明 令 u=xy,则 0 ( 1 + 22 ) 2 ( 1 + 2 u) ( 32 + u2 + 22 + u2 ) >32 + 2 ( 1 + 2 u) ( 3+ 2 2 + u2 ) >( 32 +2 ) ( 2 + u2 ) 6 u+ 2 ( 1 + 2 u) 2 + u2 >( 32+ 2 ) u2 + 2 2 .( * )∵ ( 32 + 2 ) u≤ ( 32 + 2 )×…  相似文献   

17.
<正> 一、a0=1中a≠0 例 1 当m=_____时,函数y=(m+3)x2m+1+4x-5(x≠0)是一个一次函数. 错解当2m+1=1时,函数为一次函数,解得m=0; 当m+3=0时,函数为一次函数,解得m=-3.  相似文献   

18.
基础篇课时一 不等式意义、性质、解集诊断练习一、填空题1.用不等号“>”或“<”填空.1a>b时,a-b0,2a0时,b0,ab<0,4a<0时,b0,ab>0,5a<0时,b0,ab>0,6a>0时,b0,ab<0,7a0,b<0,则1a1b.2.用不等式表示:1m是非负数,2x是不大于4的数,3y的一半不小于y与-2的和,4a、b两数的平方和大于13.3.已知2a-3x2+2a>1是关于x的一元一次不等式,则a=,不等式的解集是.二、选择题1.下列各式:11x-2>1,2x-y≥2,3x<13+4x,42x2-x>0,5x2+13=1,6y+42>2中,一元一次不等式有(  )(A)1个. (B)2个. (C)3个. (D)4个.2.下面说法中错误的是(…  相似文献   

19.
<正> 数学竞赛中,常有带省略号“……”的求和问题.这类问题项数多,数据大,计算时需要一定的技巧.本文介绍如何巧用题中的“0”来解答这类试题. 一、活用已知条件中“0”例1 已知x3+x2+x+1=0,那么1+x+x2+x3+…+x1995= .(第八届“祖冲之杯”初中数学邀请赛试题)  相似文献   

20.
在函数的学习中,经常会遇到条件很相似,但在理解及解题方法上却存在很大差异的一些问题.若能对比处理,在加深对题目的理解,题目的挖掘,审题能力的培养等几个方面,都是大有好处的.下面例析这些问题.一、定义域与值域例1设函数f(x)=1g(ax~2+2x+1).(1)若f(x)的定义域是R,求实数a的取值范围;(2)f(x)的值域是R,求实数a的取值范围.解(1)要使函数f(x)=lg(ax2+2x+1)的定义域是R,即须ax2+2x+1>0恒成立.当a=O时,2x+1>0不恒成立.所以a=0不合题意.当a≠0时,须a>0且△=2~2-4a<0.解得a>1.所以实数a的取值范围是a>1.(2)要使函数f(x)=lg(ax2+2x+1)的值域是R,即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号