首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
定理(哥西──施瓦兹不等式)在一个欧氏空间里,对于任意向量a,p,有不等式<a,肛’≤<α,α><β,β>当且仅当α与β线性相关时才取等号。哥西——施瓦兹不等式是高等代数中一个非常重要的不等式,它不仅可以使我们把解析几何中夹角的概念合理的推广到一般的欧氏空间,而且它还可以证明许多不等式,特别是初等数学中的许多不等式看起来与它毫无联系,但都可以用它来证明。例1、证明对于任意实数a;,az,…an,b入,··小。都有不等式(a小1+azb。+…+anbJ三(a;’+a。’+…+as)·(b+bg+…+bn句成立。证明:设a一(…  相似文献   

2.
题目若正数a、b、c满足a b c=1,李长明老师在《再谈一个不等式的改进与推广》(本刊94—2期)一文中,对上述不等式从数形结合的角度给出了证明和推广,读后深受启发,本文再对上述不等式的下界给出一种小巧玲珑的代数证法,并对推广后的不等式也给出一个漂亮的纯代数证法.三式相加得:下面证明推广后的不等式:证明(i)先证下界化简得;对i求和得:(ii)再证上界设t>0,由均值不等式有当且仅当pa_1+q=pa_2+q=…pa_n q时取等号,解得把t的值代入(1)式化简得:当且仅当a_l=a_2=…a_n=1/n时取等号。综合(i)、(ii)、(*)式得证,至此本…  相似文献   

3.
在数列与不等式的交汇处命题时,我们常见以下2种类型的命题方式:(Ⅰ)在一定条件下证明a1+a2+a3…+an〈f(n);(Ⅱ)在一定条件下证明a1+a2+a3+…+an〉f(n)。  相似文献   

4.
柯西不等式是竞赛中一个非常重要的不等式,其基本形式是:(a1b1+a2b2+…anbn)^2≤(a1^2+a2^2+…an^2)(b1^2+b2^2+…bn^2)(ai,bi∈R^+) 应用该不等式,很容易得到特殊情形下柯西不等式的分式形式和根式形式:  相似文献   

5.
文[1]给出了不等式——>壬(nEN且n>2)的一种证法.下面给出此不等式的一种简单证法.证明为证原不等式先证下式,综合1”,2”可知(1)式成立,从而原不等式成立.运用上面的方法,不难得到以下两个不等式:命题置若nEN且n>2,则nlthe证明1”当n一2时,左边2”当n>3时,左边一n综合1”,2呵知(2)式成立.命题2若nEN且n>2,则,;’证明时分n—2,n—3,n>4三种情况讨论,并用公式l’+2‘+…+n‘一万。‘(。+1)’’。,,l,·、。—、——4求和,证明略.一个不等式的再研究@胡斌$山东省惠民师范学校!2517001张辉.一…  相似文献   

6.
高中代数下册(必修)事项习题十五第6题是柯西不等式的特殊情形:当且仅当ad=bc时等号成立而柯西不等式的一般形式为:若aibi(i=1,2,……n)都是实效,则有当且仅当a=kbi时等号成立实践证明用河西不等式证明一些不等式将会大大简化证顾过程,下面举若干可用柯西不等式证明的问题供同仁参考问(甘肃省教材编审室编写的高二年级第一学期代数配套练习5第8题)证:”·“a>b>c.”.a-c>0.故务要证明故不等式成立树2如果a,b6R”,且a一b,求证:a3+b3>aZb+abZ(代数下册第13页例幻例3已知a,b,。ER”,那么/+P十一>3abc等…  相似文献   

7.
题目设a,b,c是正实数,且a+b+c=1,则有(1/b+c-a)(1/c+a-b)(1/a+b-c)≥(7/6)^3(1) 文[1][2][3]给出了不同的证明方法,笔者对这个优美的不等式再给出一个简单的初等证明,并对不等式(1)做一些探究.  相似文献   

8.
柯西不等式是指:设a1,a2,…,an与b1,b2,…,bn是两组实数,则有(a1b1+a2b2+…+…anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2),当且仅当这两组数对应成比例,即a1/b1=a2/b2=…=an/bn时等号成立,通常我们多用n=2或3时的形式。  相似文献   

9.
已知x、y、z为正实数,求证:x/(2x+y+z)+y/(x+2y+z)+z/(x+y+2z)≤3/4. 这是1996年《中等数学》第2期数学奥林匹克初赛40题,文[1]用构造函数法证明此不等式,文[2]分别用排序不等式、构造向量的方法又给出了三种不同证明方法,但它们的证明思路独特、方法技巧性较强.本文将通过换元法使用均值不等式给出证明,过程自然、简捷,容易操作、推广.  相似文献   

10.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;  相似文献   

11.
一类数列不等式的巧证   总被引:2,自引:0,他引:2  
潜海芬 《数学教学》2008,(12):35-36
拜读文[1],觉得很受用.因为文[1]给出两类不等式证明的一些共性与规律,让学生有章可循,而不是盲目地探索.笔者在教学实践中发现,还有一类数列不等式:a1+a2+a3+…+an〈m(其中m为常数)就不能用文[1]提供的方法来证,但可用与其类似的方法来解决.  相似文献   

12.
题目 已知a,b,c∈R+,求证(a2+ ab+b2)(b2+ bc+c2)(a2+ac+c2)≥(ab+bc+ac)3. 文[1][2]用构造三角形中的费尔马点,再利用三角形面积,余弦定理转化为三角形不等式证明.文[3]利用代换和三元均值不等式给出了证明.  相似文献   

13.
设a、、占、(i=z,2,3,…,n)为任意实数,则(a子十。圣 一 武)(峨 砖一十此))(。1占l aZ占: … an占,)2,式中等号当且仅当 证:拱=罕=…=努时成立,这就是著名的柯西不bl如b,’‘一’一’‘一一‘一一一”‘一·所以例3 二圣1一xl二成立,故原不等式成立.设二1·二2··…二,〔R十,且i哥二、一‘,求 二圣1一xZ 2 J”、1十丁一一一二多,一万 1一工”n一1等式,应用甚广. 文〔1」用等号成立条件法,给出了一类分式不等式的巧妙证明,现就该文中各例,通过添配适当的因式,运用大家熟悉的柯西不等式证之,以资比较. 例1设a,b,。都是正数,证明: (《数学通…  相似文献   

14.
4契比雪夫不等式的运用 契比雪夫不等式设a1,a2,…,an和b1,b2,…,bn是两组同序的实数.则a1b1+a2b2+…+anbn≥1/n(a1+a2+…+an)(b1+b2+…+bn).反序时不等式也反号.  相似文献   

15.
已知a,b〉0,a^3+b^3=2,则a+b≤2.对此流行不等式,文[1]作了推广:ai〉0,i=1,…,n,∑ni^m=a1^m+…+an^m=l(2≤m∈N),则∑ai≤(mn+l-n)/m.现给出另一推广.  相似文献   

16.
在不等式的证明中,有一类不等式很值得我们注意,这类不等式就是通常称作数列型不等式.那什么是数列型不等式呢?我们把数列{an}中:a1+a2+…+an〈f(n)(或〉),(其中f(n)为n的代数式)称为数列型不等式.这类题目在证明时。要依据题设和题断的特点、内在联系,才能选择适当的变形得证明的方法,它对解题人的恒等变形能力要求很高.观察能力。  相似文献   

17.
本文[1]中提出30个优美的不等式,下面就第27个优美不等式给出它的证明并提出它的推广,供读者参考.问题 (第27个优美不等式)设a,b,c>0且a+b+c=3,求证:1/√1+a+a2+1/√1+b+b2+1/√1+c+c2≥√3.  相似文献   

18.
付平武 《成才之路》2010,(18):35-35
在中学我们重点学习了几何均值不等式及其应用,本文中我们将介绍柯西不等式在解题中的一些应用。柯西不等式是一个非常重要的不等式,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。所谓柯西不等式是指:设a,b.∈R(i=1,2…,n,),则(a1b1+a2b2+…anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2),  相似文献   

19.
《中学教学月刊》1999年第10期《一组三角形不等式的代数本质》一文中,有一个留待探讨的不等式,本文利用<b,m>0)给出其证明.若x,y,zR+,xy+yz+zx=1,则8x2y2z2>(1-x2)(1-y2)(1-z2).证明(1)x>0,y>0,z>0,xy+yz+Zx=1,x,y,z三个数中至多有一个数不小于1(若有两个数不小于1,则与xy+yz+zx=1矛盾).从而原不等式左边>0,右边<0,不等式成立.(2)若0<x<1,0<y<1,0<z<1,由即4ZJ)r>(1一人(1-Z勺.同理可证,勿’xz>(1-X勺(1-X勺,4X’ry>(1-X勺(1-y)三式相乘得4’X、‘X‘…  相似文献   

20.
文[1]提出一个猜想:若正数a,b,c满足abc≥1,则(a/b+b/c+c/a)(b/a+c/b+a/c)≥(a+b+c)(1/a+1/b+1/c),文[2]将猜想的条件扩大为a,b,c为正数,并提出几个结构类似的不等式,笔者在学习文[1]和文[2]的基础上,利用柯西不等式及其推广给出文[1]中的猜想及其几个形似不等式的证明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号