首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
凌艺国 《数学教学》2008,(3):25-25,10
在人教版《数学》第二册(下)直线与平面所成的角一节中有一个公式:cosθ=cosθ1cosθ2.如图1,AO是平面α的斜线,A是斜足,OB垂直于α,B为垂足,则直线AB是斜线在平面α内的射影.  相似文献   

2.
高中数学课本[人教版第二册(下B)p.44]给出了公式cosθ=cosθ1·cosθ2,其中公式中的θ1是斜线与平面所成的角,θ2是平面内的直线与斜线在平面内的射影所成的角,而θ是斜线与平面内的直线所成的角,当平面内的直线不过斜足时,θ就是两条异面直线所成的角. 对某些两条异面直线所成的角以及斜线和平面所成的角问题,灵活应用此公式可比较方便的解决,下面举例说明.  相似文献   

3.
《全日制普通高级中学教科书(试验修订本)数学》第二册(下B,第44页)在研究平面的斜线和它在平面内的射影所成的角,以及斜线和平面内任一直线所成的角之间的关系时,给出了二个公式:cosθ=cosθ_1·cosθ_2。就该公式的理解和应用,笔者在教学  相似文献   

4.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

5.
新教材第二册(下B)9.7直线和平面所成的角。讨论了三角余弦的关系式,即cosθ=cosθ1·cosθ2,其中θ是斜线和平面内的直线所成的角,θ1是斜线和平面所成的角,θ2是斜线在面上的射影和面内的直线所成的角.上述关系式隐含着几个重要结论,运用这些隐含结论解决问题,既简捷又方便,巧妙性、灵活性更是不言而喻。下面,就隐含结论及其简单应用展示出来,但愿对同仁有所帮助和启示.[第一段]  相似文献   

6.
高中数学课本[人教版第二册(下B)p.44]给出了公式cosθ=cosθ1·cosθ2,其中公式中的θ1是斜线与平面所成的角,θ2是平面内的直线与斜线在平面内的射影所成的角,而θ是斜线与平面内的直线所成的角,当平面内的直线不过斜足时,θ就是两条异面直线所成的角.对某些两条异面直线所成的角以及斜线和平面所成的角问题,灵活应用此公式可比较方便的解决,下面举例说明.图11应用公式求两条异面直线所成的角例1如图1,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别在棱B1C1、C1C上,且EC1=31,FC1=33,求异面直线A1B与EF所成的角.解因为A1B在平面…  相似文献   

7.
公式:cosθ=cosθ1cosθ2,其中θ1表示斜线与它在平面内射影的夹角,θ2表示此时影与平面内直线的夹角,θ表示斜线与平面内该直线的夹角.  相似文献   

8.
斜线AB与平面α所成的角为θ1,A为斜足,AC在α内,且与AB的射影成θ2角,∠BAC= θ,则有cosθ=cosθ1cosθ2(*). 这个公式在新教材中要求学生掌握.笔者在教学实践中发现,学生对它的应用很不熟悉.本 文试图归纳它的几个应用.  相似文献   

9.
若平面的一条斜线与这个平面所成的角为α,平面内的一条直线与这条斜线及其射影所成的锐角(或直角)分别为θ及β.则有cosθ=cosα·cosβ。  相似文献   

10.
新教材第九章(B)中的第44页有如下公式:cosθ=cosθ1cosθ2,它的几何解释如下:如图1,已知OA是平面α的斜线,A为斜足,OB⊥α,垂足为B,AC为α内任一直线.AO与AB所成的角为θ1(线面角);AB与AC所成的角为θ2(面内角);AO与AC所成的角为θ(面外角).  相似文献   

11.
如图1,直线AB和平面α所成的角是θ1,直线AC在平面α内,AC和AB的射影AB’所成的角为θ2,设∠BAC=θ,则cosθ1cosθ2=cosθ.此公式在新教材中列为了必学的内容,大大提高了其地位.下面举例谈谈它的应用.一、用于求直线与平面所成的角  相似文献   

12.
巧用公式cosθ=cosθ1·cosθ2能妙解许多问题,下面举例说明.一、用于求空间角例1如图1,PA是平面α的斜线,∠BAC=90°,又∠PAB=∠PAC=60°,求PA与平面α所成的角.  相似文献   

13.
引理 已知A0是平面α的斜线,A为斜足,OBα⊥,B为垂足,AC是平面α内的任一直线,∠0AB=θ,∠OAC=θ1,∠BAC=θ2,则cosθ1=cosθcosθ2. 根据角的放置形式,可形象地称引理为“斜(斜角)立(立角)平(平角)余弦定理”.  相似文献   

14.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

15.
在高中数学教材第九章——直线、平面、简单几何体中,课本介绍了最小角定理,该定理给出的其实就是一个余弦等式:cosθ=cosθ1·cosθ2,其中θ1角是斜线与平面所成的角(空间角),而θ与θ2均是(或可转化为)两直线夹角(平面角),这一等式为我们解决(或应角)空间角θ1的大小问题提供了非常直接和衫的求解途径。  相似文献   

16.
立几课本中第33页11题: 经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线. 立几课本中第122页第3题:AB和平面a所成角是θ1,AC在平面a内,AC和AB的射影AB'所成角θ2,设∠BAC=θ,求证:cosθ1·cosθ2=cosθ.(如图1)  相似文献   

17.
若直线AB是平面α的一条斜线,A’B’是AB在平面α内的射影,l为平面α内不同于A’B’的一条直线,且AB与l的夹角为θ,A’B’与l的夹角为θ1,AB与平面α所成的角为θ2,则易知cosθ=cosθ1·cosθ2,为了便于学生记忆和灵活使用,笔者不妨将此公式称为三线三角余弦公式,  相似文献   

18.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

19.
“斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角”,这是斜线和平面所成角的一个重要性质,它在解决立体几何中有关角的不等式问题时,大有用处. [例1]rt△ABC的斜边BC在平面α内,且两直角边AB、AC与α所成的角分别为θ_1、θ_2.求证:  相似文献   

20.
人教版高中数学第二册(下B)第43页在讲解直线和平面所成角时有如下结论:如图l所示,OA 和平面α所成的角是θ1,AC在平面α内,AC与OA 在平面α上的射影AB所成的角为θ2,设∠OAC= θ,则有cosθ=cosθ1·cosθ2(证明可参照课本).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号