首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初中代数课本第四册,P_(166),17题:“三角形面积公式:S_△=(s(s-a)(s-b)(s-c))~(1/2)其中s=1/2(a+b+c),a,b,c是三角形三边的长,”这个“公式”远在古希腊阿基米德就知道,后由希腊人海伦(Hero)(生于公元前125年)在他的著作“Merprka”一书的“度量表”章中首先证明了这一公式,还举了求边为13,14,15之三角形面积一例。在与世隔绝的中国南宋时期(约公元1247年),数学家秦九韶,在他的《数学九章》中曾独创地讨论到它,名为“三斜求积”,大斜、中斜、小科分别表示三角形三边,求面积。把他的结论用现代算式表示是:  相似文献   

2.
读本刊1992年第5期《中国的海伦公式》一文,颇受启发,由初中生熟知的三角形面积公式 S_△=1/2bcsinA=1/2acsinB=1/2absinC, 结合“中国的海伦公式”,即 S_△=(1/4[c~2a~2-((c~2 a~2-b~2)/2)~2])~(1/2), 不难得出如下一组公式: sinA=1/bc((c~2a~2-((c~2 a~2-b~2)/2)~2)~(1/2));① sinB=1/ac((c~2a~2-((c~2 a~2-b~2)/2)~2)~(1/2));② sinC=1/ab((c~2a~2-((c~2 a~2-b~2)/2)~2)~(1/2))。③应用这组公式,可以巧妙简捷地解决已知三角形三边长,求其内角一类题目,下面以一此典型题目为例,介绍这类题目的解法。例1 已知a=20,b=29,c=21,求角B。(初中《代数》第四册第144页第1题)  相似文献   

3.
由三角形三边表示面积公式S=(p(p-a)(p-b)(p-c))~1/2(1),其中a,b,c是三角形三边的长,p=1/2(a+b+c),并记S为面积。 (1)式就是著名的秦九韶——海伦公式。我国宋秦九韶编撰的《数书九章》一书的卷五中曾载过“三斜求积”,它就是根据三角形三边求三角形的面积的问题。本文曰:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何”答曰:“面积二百一十五顷”如图1  相似文献   

4.
三角形之外接圆半径与内切圆直径间的关系R≥2r的已有证明比较复杂,本文给出一个较简单的证法,进而解有关问题。为应用方便,有关结论以命题形式出现。命题1 三角形外接圆半径与内切圆半径之积的2倍,等于这个三角形的三边之积与三边之和的比。证明:∵S_△=1/2r(a b c),即2r=4S_△/(a b c)又∵S_△=(abc)/4R,即R=(abc)/4S_△。故2rR=(abc)/(a b c)。命题2 若三角形的三边为a、b、c,则abc≥(a b-c)(a c-b)(b c-a)。证明:∵abc-(a b-c)(a c-b)(b c-a)=abc-(a~2b a~2c b~2a b~2c c~2a c~2b-  相似文献   

5.
△ABC中,若a,b,c分别是∠A,∠B,∠C所对的边,△为△ABC的面积,则有 ctgA=cosA/sinA=(b~2 c~2-a~2)/2bcsinA=(b~2 c~2-a~2)/4△, tg(A)/2=(1-cosA)/sinA=(a~2-(b-c)~2)/4△等。由此以及海伦面积公式,不难得出以下一些性质: 1. ctg A ctg B ctg C=(a~2 b~2 c~2)/4△.  相似文献   

6.
题设△ABC 的三边和面积分别为 a、b、c 和△,则a~2b~2 b~2c~2 c~2a~2≥16△~2 (1)文[1]中利用海伦公式给出几何证明.笔者经过探索,发现把(1)式转化成三角不等式来证明,不仅简捷,而且可以获得多种证法.证由三角形面积公式,(1)式等价于  相似文献   

7.
面积法证题     
利用图形的面积公式,求解或证明一类几何问题,有它的独到之处.应用这种方法几乎可以解决和证明所有的几何问题,用途十分广泛.可见讨论用面积方法在几何学中的应用是极其意义的.三角形的面积公式是求多边形面积的基础,目前所用到的主要公式并不多,主要有以下几个公式:(1)已知一底及高S_△=(1/2)ah_a=(1/2)ah_b=(1/2)ch_c(2)已知两底及夹角S_△=(1/2)absinC=(1/2)bcsinA=(1/2)casinB(3)已知三边S_△=(p(p-a)(p-b)(p-c))~(1/2) 其中p=(a b c)/2一、面积法证明成比例线段问题应用三角形面积公式,可以得到一系列结论:1.等底三角形面积比,等于对应高的比,当a=a',则S_(△ABC):S_(△A'B'C')=h_a:h_(a')2.等高三角形面积比,等于底的比,当h_a=h_(a'),则S_(△ABC):S_(△A'B'C')=BC:B'C'  相似文献   

8.
古希腊数学家海伦(Heron,约公元一世纪)在《测量仪器》一书中首先提出求已知三角形三边的面积公式: 设△ABC的三边为a、b、c,半周长为p,面积为△,则我国南宋秦九韶(约公元十三世纪初叶至中叶)在《数书九章》一书中也提出了类似的面积公式: ①和②式形异实同,所以我们把它们叫做海伦—秦九韶公式。本文将利用海伦—韶九韶公式来证明一类涉及三角形的边、面积的几何不等式。读者将看到,利用海伦—秦九韶公式来证明一些著名的不等式,如魏琴伯克不等式、费恩斯列尔—哈德维格尔不等式、匹多不等式等,不仅简捷自然,而且还会得到它们的一些推广和加强式。为此我们先约定:a、b、c、p.△分  相似文献   

9.
我国南宋著名的数学家秦九韶所著《数书九章》中提出了求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”用现代公式表示为:  相似文献   

10.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

11.
一、问题的提出 一个三角形不等式联系着其元素间的不等关系,探究这种关系的来龙去脉,了解它的构思意图是一项有意义的发掘工作。本文主要介绍魏森伯克不等式的产生背景,同时给出它的几种证法。 设△ABC的三边长为a、b、c,面积为S_△,则有 a~2 b~2 c~2≥4(3~(1/2))S_△,①其中等号当且仅当△ABC为等边三角形时成立。  相似文献   

12.
大家知道,已知三角形的三条边的长a、b、c,应用海伦公式: S=(P(P-a)(P-b)(P-c))~(1/2) (Ⅰ) 其中P=1/2(a+b+c),就可以求出它的面积S。本文的目的,是试想把海伦公式的“构造”推广到四边形中去。换句话说,就是探讨在什  相似文献   

13.
题一个三角形的三边长分别是21/2cm,51/2cm和1cm,求它的面积.分析已知三角形三边求面积,可用海伦公式或秦九韶公式。但我发现了一个更巧妙的方法.  相似文献   

14.
(一)我省今年中考数学试题第八题是这样的:在△ABC中,已经学过△=(1/2)absinC,c~2=a~2+b~2-2abcosC,另外还学过sin~2a+cos~2a=1,试根据上述公式证明△=(s(s-a)(s-b)(s-c))~(1/2)(这里s=(a+b+c)/2)。  相似文献   

15.
三角形面积的计算是初中平面几何中的重要内容,在日常生活和科学技术中有着广泛的应用,现把它归类总结.掌握下列公式,对提高解题能力和应用能力都有一定帮助.一、公式公式1:S_△=1/2ah.其中a是底边长,h是高.它是计算三角形面积的基本公式.公式2:S_△=(p(p-a)(p-b)(p-c))~(1/2).其中a,b,c分别是三角形三边长,且p=  相似文献   

16.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

17.
人教版高中《数学》第二册(上)(必修)(以下简称"课本")第31页第6题(以下简称"原题"):设 a,b,c是△ABC 的三条边,求证:a~2 b~2 c~2<2(ab ac bc).(*)《教师教学用书》给出"原题"的证法:证法1:a~2 b~2 c~2-2(ab ac bc)=a(a-b-c) b(b-a-c) c(c-a-b).∵三角形两边之和大于第三边,∴a相似文献   

18.
初中数学中所涉及的三角形面积求法很多,灵活地运用会收到事半功倍的效果,下面列举几例供读者参考.方法1:我国古代数学家秦九韶在《算术九章》中记述了"三斜求积术",即已知三角形的三边长,求它的面积,用现代式子表示即为:S=(?)(其中a,b,c为三角形的三边长,c为最长边,S为面积.)而另一个文明古国古希腊也有求三角形面积的海伦公式:S=(?)(其中p=(a+b+c)/2.)  相似文献   

19.
文[1]提到这样一组题:已知a,b,c为正数,求证: (1)(a~2 b~2 ab)~(1/2) (b~2 c~2 bc)~(1/2)>(c~2 a~2 ca)~(1/2); (2)(a~2 b~2)~(1/2) (b~2 c~2)>(c~2 a~2)~(1/2); (3)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)>(c~2 a~2-ca)~(1/2); (4)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)≥(c~2 a~2-ca)~(1/2). 并巧妙地利用复数证明了(4)。受文[1]的启发,本文将给出上述各不等式的构图证明,以及两个一般性的结论。 在下文中,记OA=a,OB=b,OC=c。 证明 (1)如图1,设∠AOB=∠BOC=∠COA=(2π)/3,由余弦定理知AB=(a~2 b~2 ab);…,再由AB BC>CA知  相似文献   

20.
第34届IMO预选题中有以色列提供的一道试题,在△ABC的三条边BC,CA,AB上分别取点D,E,F,使△DEF为等边三角形,a,b,c分别表示△ABC的三边长,而S表示它的面积,求证: DE≥22~(1/2)S·(a~2 b~2 c~2 4~3(1/2)S)~(-(1/2)) (1) (参见《中等数学》1996年第1期第29页) 本文给出一种较为简单的证明 证 如图△DEF是正三角形,令其边长为d,又设。 卢=A 60°=(p,则2S=d·(csina十bsin卢)=d[csma bsin(甲-o)] =d[(c-bcos~)sina bsinqocosa] =d(c-bcos~)~2 b~2sin2伊(1/2)·sin(O ")≤d(c-bcos(p)~2 b~2sin2甲(1/2)· 又(c-bcosqo)~2 b~2sin~2甲=c~2 b~2-2bccos(p=b~2 C~2-2bccos(A 60°) =b~2 c~2-bccosA 3~(1/2)bcsinA =(1/2)(b~2 c~2 a~2) 23~(1/2)S. ∴由(2)得d≥22~(1/2)S[a~2 b~2 c~2 43~(1/2)S]~-(1/2),即不等式(1)成立.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号