首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = - 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

2.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

3.
The purpose of this study was to assess the contributions of racket arm joint rotations to the racket tip velocity at ball impact in table tennis topspin backhands against topspin and backspin using the method of Sprigings et al. (1994). Two cine cameras were used to determine three-dimensional motions of the racket arm and racket, and the contributions of the rotations for 11 male advanced table tennis players. The racket upward velocity at impact was significantly higher in the backhand against backspin than against topspin, while the forward velocity was not significantly different between the two types of backhands. The negative contribution of elbow extension to the upward velocity was significantly less against backspin than against topspin. The contribution of wrist dorsiflexion to the upward velocity was significantly greater against backspin than against topspin. The magnitudes of the angular velocities of elbow extension and wrist dorsiflexion at impact were both similar between the two types of backhands. Our results suggest that the differences in contributions of elbow extension and wrist dorsiflexion to the upward velocity were associated with the difference in upper limb configuration rather than in magnitudes of their angular velocities.  相似文献   

4.
The kinematics of a badminton racket during a smash stroke was observed in this study with the purpose of investigating stroke dynamics and racket behaviour. Motion capture measurements of the racket during several smash strokes performed by three players of different skill levels indicated a clear increase in racket velocity at impact with increasing skill level. Variations between translational and rotational contributions to the impact speed could also be seen between the players. The advanced player produced a much higher peak angular velocity and also relied much less on translation, with a translational velocity of only 8% of the total velocity versus the 20% for the recreational player. It is proposed that, as an alternative to shuttlecock speeds, racket head speed measurements can be used as an indicator of performance, and can also provide some insight into the interaction between the racket and player.  相似文献   

5.
The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.  相似文献   

6.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

7.
The purpose of this study was to determine the effects of sequences of the trunk and arm angular motions on the performance of javelin throwing. In this study, 32 male and 30 female elite javelin throwers participated and were separated into a short official distance group or a long official distance group in each gender. Three-dimensional coordinates of 21 body landmarks and 3 marks on the javelin in the best trial were collected for each subject. Joint center linear velocities and selected trunk and arm segment and joint angles and angular velocities were calculated. The times of the initiations of the selected segment and joint angular motions and maximum angular velocities were determined. The sequences of the initiations of the selected segment and joint angular motions and maximum angular velocities were compared between short and long official distance groups and between genders. The results demonstrated that short and long official distance groups employed similar sequences of the trunk and arm motions. Male and female javelin throwers employed different sequences of the trunk and arm motions. The sequences of the trunk and arm motions were different from those of the maximal joint center linear velocities.  相似文献   

8.
A forward dynamics computer simulation for replicating tennis racket/ball impacts is described consisting of two rigid segments coupled with two degrees of rotational freedom for the racket frame, nine equally spaced point masses connected by 24 visco-elastic springs for the string-bed and a point mass visco-elastic ball model. The first and second modal responses both in and perpendicular to the racket string-bed plane have been reproduced for two contrasting racket frames, each strung at a high and a low tension. Ball/string-bed normal impact simulations of real impacts at nine locations on each string-bed and six different initial ball velocities resulted in <3% RMS error in rebound velocity (over the 16–27 m/s range observed). The RMS difference between simulated and measured oblique impact rebound angles across nine impact locations was 1°. Thus, careful measurement of ball and racket characteristics to configure the model parameters enables researchers to accurately introduce ball impact at different locations and subsequent modal response of the tennis racket to rigid body simulations of tennis strokes without punitive computational cost.  相似文献   

9.
There has been significant technological advancement in the game of tennis over the past two decades. In particular, tennis rackets have changed in size, shape and material composition. The effects of these changes on ball rebound speed have been well documented, but few studies have considered the effects on ball angular velocity. The purpose of this study was to investigate the effects of three factors on post-impact ball spin. Tennis balls were projected at three velocities toward a clamped racket simulating three levels of stiffness and strung at three string tensions. The angular velocity of each tennis ball was measured from stroboscopic images during an oblique impact with the racket. A three-way factorial ANOVA revealed significant (P < 0.01) differences in the post-impact angular velocity for string tension, racket stiffness and impact velocity, as well as two-way interactions between string tension and impact velocity, and between racket stiffness and impact velocity. The possibility of tangential elastic strain energy being stored in the racket and ball was evident in low impact velocity trials. These displayed a post-impact angular velocity where the circumference of the ball was translating faster than the relative velocity between the ball’s centre of mass and the string surface. It was concluded that increasing the relative impact velocity between the racket and ball was the best means of increasing the post-impact angular velocity of the tennis ball.  相似文献   

10.
ABSTRACT

The aim of the present study was to compare the biomechanical characteristics of the table tennis top spin shot when played cross-court (CC) or long-line (LL) in competitive table tennis players. Seven national level players respectively completed 10 long-line and 10 cross-court top spin shots responding to a standard ball machine. A stereophotogrammetric system was used to track body segments while executing the motion. Significantly more flexed right knee and elbow angles were measured at the moment of maximum velocity of the racket (MMV) in LL. In addition, significantly greater angles between the feet and the table and between the shoulders and the table at the MMV, indicated more pronounced rotation angles of the lower upper and upper-body in LL compared to CC with respect to the table. A higher inclination of the racket at the MMV was found in LL. The elbow flexion and the racket inclination may be associated to the direction of the shot. The present findings show that kinematic differences exist between the LL and the CC topspin forehand in competitive table tennis players. Coaches should be aware of these differences to adopt the optimal teaching strategies and to reproduce proper joint angles during training.  相似文献   

11.
The purpose of this study was to quantify ranges and speeds of movement, from shoulder external rotation to ball impact, in the tennis service actions of world class players. Two electronically synchronised 200 Hz video cameras were used to record 20 tennis players during singles competition at the Sydney 2000 Olympic games. Three-dimensional motion of 20 landmarks on each player and racquet were manually digitized. Based upon the mean values for this group, the elbow flexed to 104 degrees and the upper arm rotated into 172 degrees of shoulder external rotation as the front knee extended. From this cocked position, there was a rapid sequence of segment rotations. The order of maximum angular velocities was trunk tilt (280 degrees/s), upper torso rotation (870 degrees/s), pelvis rotation (440 degrees/s), elbow extension (1510 degrees/s), wrist flexion (1950 degrees/s), and shoulder internal rotation. Shoulder internal rotation was greater for males (2420 degrees/s) than females (1370 degrees/s), which may be related to the faster ball velocity produced by the males (50.8 m/s) than the females (41.5 m/s). Although both genders produced segment rotations in the same order, maximum upper torso velocity occurred earlier for females (0.075 s before impact) than for males (0.058 s). At impact, the trunk was tilted 48 degrees above horizontal, the arm was abducted 101 degrees and the elbow, wrist, and lead knee were slightly flexed. Male and female players should be trained to develop the kinematics measured in this study in order to produce effective high-velocity serves.  相似文献   

12.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

13.
The purpose of this study was to determine the significance of mechanical energy generation and transfer in the upper limb in generating the racket speed during table tennis topspin forehands. Nine advanced and eight intermediate table tennis players performed the forehand stroke at maximum effort against light and heavy backspin balls. Five high-speed video cameras operating at 200 fps were used to record the motions of the upper body of the players. The joint forces and torques of the racket arm were determined with inverse dynamics, and the amount of mechanical energy generated and transferred in the arm was determined. The shoulder internal rotation torque exerted by advanced players was significantly larger than that exerted by the intermediate players. Owing to a larger shoulder internal rotation torque, the advanced players transferred mechanical energy from the trunk of the body to the upper arm at a higher rate than the intermediate players could. Regression of the racket speed at ball impact on the energy transfer to the upper arm suggests that increase in the energy transfer may be an important factor for enabling intermediate players to generate a higher racket speed at impact in topspin forehands.  相似文献   

14.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

15.
This paper investigates the nature of the power point in tennis. A series of static racket impacts and a polynomial fit were used to simulate four different racket shots with increasing amounts of angular velocity—identifying the true ‘power point’ for each shot. A rigid body model was used to define the ‘ideal point’ for each shot—the impact point which theoretically yields maximum outbound ball velocity. Comparing theory with experiment revealed that the ‘ideal point’ is most accurate for impacts around the racket’s node point (the rigid body model does not account for frame vibration). Previous research has shown that tennis players aim to strike the node point of the racket. The concept of the ideal point has potential in tuning the weight distribution of a racket to a player’s shot type. If the ‘ideal point’ exists at the racket node point for a player’s typical forehand shot, then outbound ball velocities can be maximised.  相似文献   

16.
The ability to generate a high racket speed and a large amount of racket kinetic energy on impact is important for table tennis players. The purpose of this study was to understand how mechanical energy is generated and transferred in the racket arm during table tennis backhands. Ten male advanced right-handed table tennis players hit topspin backhands against pre-impact topspin and backspin balls. The joint kinetics at the shoulder, elbow and wrist of the racket arm was determined using inverse dynamics. A majority of the mechanical energy of the racket arm acquired during forward swing (65 and 77% against topspin and backspin, respectively) was due to energy transfer from the trunk. Energy transfer by the shoulder joint force in the vertical direction was the largest contributor to the mechanical energy of the racket arm against both spins and was greater against backspin than against topspin (34 and 28%, respectively). The shoulder joint force directed to the right, which peaked just before impact, transferred additional energy to the racket. Our results suggest that the upward thrust of the shoulder and the late timing of the axial rotation of the upper trunk are important for an effective topspin backhand.  相似文献   

17.
Abstract

The purpose of this study was to investigate whether performance level and ball spin affect arm and racket kinematics of the table tennis topspin forehand. Nine advanced and eight intermediate male table tennis players hit topspin forehands against light and heavy backspins. Five high-speed video cameras were used to record their strokes at 200 fps. Contributions of joint rotations to the racket speed, the racket kinematics at ball impact, the time required for racket acceleration and the maximum slope of the racket speed-time curve (s max) were determined. The advanced players showed a significantly larger contribution of lower trunk axial rotation to the racket speed at impact and a significantly larger value of smax, and tended to require a less time for racket acceleration than the intermediate players. The racket speed at impact was not significantly different between the two player groups. The players adjusted the racket face angle rather than the inclination of the racket path at impact to the different ball spins. The results suggest that the ability to accelerate the racket in less time in the topspin forehand against backspin balls may be an important factor that affects the performance level.  相似文献   

18.
Three-dimensional (3-D) high-speed cinematographic techniques were used to record topspin and backspin forehand approach shots hit down-the-line by high-performance players. The direct linear transformation (DLT) technique was used in the 3-D space reconstruction from 2-D images recorded via laterally placed phase-locked cameras operating at 200 Hz. A Mann-Whitney U-test was calculated for the different aspects of the topspin and backspin shots to test for significance (P less than 0.05). A significant difference was recorded between topspin and backspin shots in the angle of the racket at the completion of the backswing. The racket was taken 0.48 rad past a line drawn perpendicular to the back fence for topspin trials, but only rotated 0.86 rad from a line parallel to the net in the backspin shot. Maximum racket velocities occurred prior to impact and were significantly higher in topspin (26.5 m s-1) compared to backspin (16.6 m s-1) trials. This resulted in the topspin trials recording a significantly higher ball velocity compared to backspin trials (27.6 m s-1 vs 21.7 m s-1). Pre-impact racket trajectories revealed that in topspin shots the racket moved on an upward path of 0.48 rad while in backspin shots it moved down at an angle of 0.34 rad. In the topspin trials impact occurred significantly further forward of the front foot than in backspin shots (0.26 m vs 0.05 m) while the angle of the racket was the same for both strokes (0.14 rad behind a line parallel to the net). The mean angle of the racket-face at impact was inclined backwards by 0.11 rad for backspin strokes and rotated forward by 0.13 rad for topspin strokes. Angles of incidence and reflection of the impact between the ball and the court showed that backspin trials had larger angles of incidence and reflection than topspin strokes.  相似文献   

19.
Some studies have reported that overarm baseball pitching shows a proximal to distal sequential joint motion including a rapid extension of the elbow. It has been suggested that the rapid elbow extension just before ball release is not due to the action of the elbow extensor muscles, but the underlying mechanisms are not so clear. The purpose of this study was to determine the contributions of each joint muscular- and motion-dependent torques, including the upper trunk and throwing arm joints to generate the rapid elbow extension during baseball pitching. The right handed throwing motions of three baseball pitchers were recorded using five high-speed video cameras and the positional data were calculated using the direct linear transformation method. A throwing arm dynamic model of the upper trunk and throwing arm joints was then used, including 10 degrees of freedom, to calculate the throwing arm joint muscular-, throwing arm and upper trunk joint motion-, gravity-, and external force-dependent components that contribute to the maximum elbow extension angular velocity. The results showed that the rapid elbow extension was primarily due to the upper trunk counterclockwise rotation and shoulder horizontal adduction angular velocity-dependent torques. This study implied that the trunk counterclockwise rotators and shoulder horizontal adductors generate positive torques to maintain the angular velocities of the upper trunk counterclockwise rotation and shoulder horizontal adduction may play a key role in producing the rapid elbow extension.  相似文献   

20.
Changes in angular momentum during the tennis serve   总被引:1,自引:0,他引:1  
Three-dimensional cinematography and the direct linear transformation method were used to obtain the coordinates of the landmarks of five right-handed collegiate tennis players. A 15-segment model was used to calculate the total body angular momentum about three orthogonal axes (X, parallel to the baseline; Y, normal to baseline and pointing towards the net; and Z, pointing upwards) passing through the centre of mass and to obtain the segmental contribution of the trunk, arms and legs. Most of the clockwise angular momentum about the X-axis was concentrated in the trunk and the racket-arm. Between the events of maximum external rotation and ball impact, the clockwise angular momentum about the X-axis of rotation of most body segments was reduced and the racket-arm gained clockwise angular momentum. The body angular momentum about the Y-axis of rotation had two distinct patterns and was the result of the lateral rotation of the trunk as the racket shoulder was elevated in preparation for impact. This body angular momentum was clockwise from the event of maximum external rotation to impact for the players with the greatest ball speed, whereas it was counterclockwise for the other players. The angular momentum about the Z-axis of rotation was small and lacked a consistent pattern. The largest source of angular momentum in the tennis serve derives from the remote angular momentum about the X- and Y-axes of rotation, which are then transferred from the trunk to the racket-arm and finally to the racket. Near impact, most of the angular momentum (75.1%) was concentrated in the racket-arm. Of the angular momentum of the racket-arm, the largest percentages were concentrated in the racket (35.9%) and the forearm segment (25.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号