首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>本文现将人教版八年级(下)中的一道习题及其逆命题在中考中的应用介绍如下,供初中师生教与学时参考.题目如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?解因为l_1∥l_2,所以S_(△ABC)=S_(△DBC)(同底等高的三角形面积相等).还可以画出与△ABC面积相等的三角形若干个,只要同底BC,第三个顶点在  相似文献   

2.
本文将给出正三角形中的一个新的不等式,并对它作一些推广. 定理 设D、E、F分别是正△ABC的边BC、CA、AB上的内点,△ABC、△AEF、△BDF、△CED的面积分别记为S、S_1、S_2、S_3.则 1/s_1 1/s_2 1/s_3≥12/S  相似文献   

3.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

4.
AD、BE、CF 是锐角△ABC 的三条高,则△DEF 为△ABC 的垂足三角形(如图1),用S_(△ABC)、R 分别表示△ABC 的面积和外接圆半径.用 S_(△ABC)、L_(△DEF)分别表示△DEF 的面积和周长,则垂足三角形有如下性质:  相似文献   

5.
<正>在近几年的中考试题中,"二等分"图形的面积问题频频出现.解答这类题目的关键是要熟练掌握常见图形的"等积线"的应用.一、三角形的等积线(二分线)探究如图1,直线a∥b,S_(△BCE)=S_(△BCF)(同底等高),易得S_(△BOE)=S_(△COF).如图2,中线AD所在的直线就是△ABC的等积线,  相似文献   

6.
定理 P是△ABC形内任一点,AP、BP、CP的延长线分别与其对边交于D、E、F,则PD/AD PE/BE PF/CF=1 证 如图1,设△PAB、△PBC、△PAC和△ABC的面积依次为S_1、S_2、S_3和S,则,S_1 S_2 BS_3=S,又PD/AD=  相似文献   

7.
题目如图(1),已知,四边形ABCD中,AB∥CD,M为AB的中点,S_(△DMC)、S_(△DMC)、S_(△DBC)分别表示△DMC、△DAC、△DBC的面积,那么,S_(△DMC)=S_(△DAC)+S_(△DBC)/2 ①。  相似文献   

8.
题目:锐角△ABC中,∠A的平分线交BC于D,交△ABC的外接圆于点E,自点D分别作DM⊥AB于点M,DN⊥AC于N,证明:S_(△ABC)=S四边形AMEN,(IMO,28—2)。证法/:如图,作出△ABC外接圆直径AL,连接MN,LB,LC,LE,LM,LN。显然,DN,LC同时垂直于AC,DN∥LC,那么S_(△DCN)=S_(△DLN)。同理:S_(△SMB)=S_(△DLM), 则:S_(△ABC)=S四边形AMLN,  相似文献   

9.
正原题再现:如图,在方格纸上任意画一个顶点都在格点上的直角三角形ABC,并分别以这个直角三角形的各边为一边向外部作正方形,试探究3个正方形面积之间有怎样的数量关系?数学模型:以BC为边的正方形面积记为S_1,以AC为边的正方形面积记为S_2,以AB为边的正方形面积记为S_3,则3个正方形面积之间的关系为S_1+S_2=S_3.解决问题:所有的四边形都是正方形,所有的三角形都是直角三角  相似文献   

10.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

11.
命题如图1,在△ABC中,D是BC上任意一点,P是AD上任意一点,设△APB、△BPD、△APC、△CPD的面积分别为S_1、S_2、S_3、S_4,则有  相似文献   

12.
定理 设A’、B’、C’分别在△ABC的三边BC、CA、AB上,若AC’:C’B=p,BA’:A’C=q,C’B:B’A=r,△ABC与△A’B’C’的面积为S与S_0.则S_0/S=pqr 1/(p 1)(q 1)(r 1)证 设△AB’C’、△BA’C’、△CB’A’的面积分别为S_1、S_2、S_3、则  相似文献   

13.
题目:如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?(人教版八年级下册第十九章《四边形》习题19·1第8题)认真研究本题可以得到以下两个命题:命题:如图1,若直线l1∥l2,则S△ABC=S△DBC,逆命题:如图2,若S△ABC=S△DBC,则有直线l1∥l2.不难证明两个命题的正确性·  相似文献   

14.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

15.
运用面积关系来证明或计算平面几何题的方法,称之为面积法.它是平面几何中的一种常用方法,灵活运用,可收到事倍功半的效果.一、用面积法求图形面积例1 在△ABC中.DE∥FG∥BC,GI∥EH∥AB.若三角形△ADE、△EFG、△GIC 的面积分别为  相似文献   

16.
设A_1,B_1,C_1分别是△ABC中BC,CA,AB边上的任意点,则你△A_1B_1C_1为△ABC的内接三角形。本文中记△ABC的面积为S,AB=c,BC=a,CA=b,内切圆半径为r,三旁切圆半径为r_a,r_b,r_c;AC_1/C_1B=m,BA_1/A_1C=n,CB_1/B_1A=l,△AC_1B_1,△BA_1C_1,△CB_1A_1,△A_1B_1C_1的面积分别为S_1,S_2,S_3,S′。则有。定理、△ABC的面积S与其内接△A_1B_1C_1面积S′有如下关系式:S′=(1+mnl)/((1+m)(1+n)(1+l))S其中AC_1/C_1B=m,CB_1/B_1A=l,BA_1/A_1C=n。  相似文献   

17.
<正>在直角坐标系中,△ABC的顶点A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),过点A作l∥y轴,交BC所在直线于点D,设D(x_D,y_D),则S_(△ABC)=1/2|y_A-y_D|·|x_C-x_B|.下面我们来证明这个公式.当△ABC位置如图1时,过C作CF⊥l,过B作BE⊥l,垂足分别为F,E,所以x_D=x_E=x_F,有AD=y_A-y_D,CF=x_C-x_D,BE=x_D-x_B,所以S_(△ABC)=S_(△ABD)+  相似文献   

18.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

19.
命题 如图1,P、Q是△ABC的等角共轭点(∠PAB=∠QAC,∠PBC=∠QBA,∠PCB=∠QCA),R、S_△表示 △ABC的外接圆半径和△ABC的面积。则AP·AQ·BC BP·BQ·AC CP·CQ·AB=4R·S_△。  相似文献   

20.
本文提出一个常见几何图形的几个特殊性质,并通过若干典型例子说明其应用。 如图,P为△ABC中BC边上一点,PE∥BA,PF∥CA。设当i=1,2,3时,C_i(S_i,R_i,r_i)分别表示△ABC,△FBP,△EPC B的周长(面积,外接圆的半径,内切圆的半径)。S'表示□AFPE的面积。 显然△ABC∽△FBP,△ABC∽△EPC,分别记其相似比为λ_1,λ_2。则有:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号