首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ …  相似文献   

2.
我们知道 ,asinα+bcosα =a2 +b2 sin(α +φ) ,其中 φ角所在象限由a、b的符号确定 ,φ角的值由tanφ =ba 确定 ,这个公式称为辅助角公式 .该公式在解题中有广泛的应用 .一、求最值例 1 求函数 y =3sin(x +2 0°) +5sin(x +80°)的最大、最小值 .解 :令θ =x +2 0°,则y =3sinθ +5sin(θ +6 0°) =3sinθ+512 sinθ+32 cosθ =112 sinθ +52 3cosθ=7sin(θ +φ) .∴ y的最大、最小值分别为 7、- 7.二、求值例 2 若函数f(x) =sin2x +acos2x的图象关于直线x =- …  相似文献   

3.
在三角函数部分经常遇到函数奇偶性问题 ,本文研究了 y =Asin(ωx φ) ,y =Acos(ωx φ) (A、ω、φ为常数 )以及 y =asinx bcosx(a、b为常数 )型函数的奇偶性 ,给出了一种解决这类函数奇偶性的方法 .1 函数 y =Asin(ωx φ) (A、ω、φ  相似文献   

4.
例 1 已知x ,y ,z>0 ,证明 :z2 -x2x + y + x2 -y2y +z + y2 -z2z +x ≥ 0 .证明 设x+ y =a ,y +z=b ,z +x=c ,则z-x =b-a ,x -y =c-b ,y-z=a -c,a ,b ,c>0 .于是原式等价于bca + cab + abc ≥a +b+c .由bca + cab ≥ 2c等得证 .例 2 在 ABC中 ,a +b +c=2s ,a ,b,c为三边 ,则abc≥ 8(s-a) (s -b) (s-c) .证明 设s -a =α ,s-b =β ,s-c =γ ,则α ,β ,γ >0 ,α+ β =c,β +γ=a ,α +γ=b.于是原式等价于(α + β) (β+γ) (γ +α)≥ 8αβ…  相似文献   

5.
数学问答     
58 .问 :已知secα -tanα =5,求sinα. (河南西平县高中一 ( 6 )班 颜 寅 )答 :secα-tanα=5=5·1=5(sec2 α -tan2 α) =5(secα +tanα) (secα -tanα) .故secα +tanα =15.与已知式联立 ,则secα=135,tanα=- 125.sinα =tanαcosα =- 1213.(解答 赵振华 )59.问 :若a、b、c均是不等于 0的常数 ,求函数y =(x +a) 2 +(x +b) 2 +(x +c) 2 的最值 . (浙江天台县平桥中学高三九班 许海燕 )答 :将原函数化为 y =3x2 +2 (a +b +c)x +(a2 +b2 +c2 ) .因 3>0 …  相似文献   

6.
在圆锥曲线中 ,求弦长为定值的动弦中点的轨迹方程是解析几何中比较棘手的问题 ,解题的方法较多 ,但运算过程繁琐复杂 ,学生往往难以入手 .本文归纳一种解题方法———角参变量法 ,可以大大地减少计算量 ,简缩推理过程 .下面简述其解题的基本思想及解题规律 .设圆锥曲线C :F(x ,y) =0的弦P1P2 的长为l ,则可设P1(x l2 cosα ,y l2 sinα) ,P2 (x - l2 cosα ,y - l2 sinα) ,其中α是直线P1P2 的倾斜角 ( 0≤α <π) .由点P1,P2 在圆锥曲线上 ,则F(x l2 cosα ,y l2 sinα) =0 ,F(x - l…  相似文献   

7.
由正、余弦的三倍角公式sin3θ =3sinθ- 4sin3 θ ,cos3θ=4cos3 θ- 3cosθ ,可得衍生公式 1sin3 α =14(3sinα -sin3α) ,cos3 α =14(3cosα +cos3α) .衍生公式 1的优点是 :对正弦、余弦的三次乘方形式可直接降幕 .例 1  (1994年全国高考题 )求函数y=1cos2 2x(sin3xsin3 x+cos3xcos3 x) +sin2x的最小值 .解 由公式 1,原函数变为y=1cos2 2x[sin3x· 14(3sinx-sin3x)  +cos3x· 14(cos3x+ 3cosx) ]+sin2x=1cos2 2x(34sinxs…  相似文献   

8.
求三角函数的最值问题是三角函数中较为重要的一个知识点;其题目类型变化多端.解法灵活多变,若能在教学中不断的归纳总结,则可培养学生多向思维的能力.本文就此举例介绍几种常用方法.1 化为Asin(wx+φ)+K的形式例1 求函数y=sin2x+2sinx·cosx+3cos2x的最大值解:y=sin2x+2sinx·cosx+3cos2x=2sinxcosx+2cos2x+1=sin2x+cos2x+2=2sin(2x+π4)+2∴当sin(2x+π4)=1时, ymax=2+22 配方法例2 求函数y=1-5sinx+2cos2x的最小值解:y=1-5sinx+2cos2x…  相似文献   

9.
在解决三角求值问题中 ,学生往往出现错解、漏解、增解甚至无从下手 ,原因是对题设条件理解不够深刻 ,不善于分析题设条件与结论中的角的相互关系 ,特别是对角的范围不注意 .本文通过例题说明上述问题 .一、注意考察轴线角这里所说的轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 ,解题时要小心 ,避免漏解、增解 .例 1 已知cosα =3cos β ,cotα =4cotβ ,求sinα .分析 题中涉及两个角α、β ,但求sinα ,故可利用sin2 β+cos2 β=1消去 β角 .由题设条件 ,得sin…  相似文献   

10.
三角函数最值问题是三角函数中的基本内容 ,也是高中数学中经常涉及的问题 .解决这类问题的基本途径 ,同求解其它函数最值一样 ,一方面应充分利用三角函数自身的特殊性 (如有界性等 ) ,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数 (如二次函数等 )最值问题 .一、利用三角函数的有界性在三角函数中 ,正弦函数与余弦函数具有一个最基本也是最重要的特征———有界性利用正弦函数与余弦函数的有界性是求解三角函数最值问题的最基本的方法 .例 1 求函数y=cosx -2cosx-1 的最小值 .分析 由于在本题的函数表…  相似文献   

11.
三角函数的最值是对三角函数的概念、图象、性质以及诱导公式、同角三角函数间基本关系式、两角和、差三角公式的综合考查 ,也是函数思想的具体体现 ,有广泛的实际应用 .下面举例介绍几种求三角函数最值的常用方法 .一、利用三角函数的有界性例 1 求函数y=3sinx -1sinx + 2 最值 .分析 由函数式 y =3sinx-1sinx+ 2 ,得(y-3 )sinx =-2 y -1,当 y=3时 ,原方程无解 ,所以y≠ 3 .∴sinx=-2 y-1y-3 .又∵ -2y-1y -3 ≤ 1,∴ -4≤ y≤ 23 .∴ymax =23 ,ymin =-4 .二、把函数y=asinx +bcos…  相似文献   

12.
题目 判断函数 y=1 sinx -cosx1 sinx cosx 的奇偶性 .不少学生是这样解答的 :y =1 sinx-cosx1 sinx cosx=2sin x2 cos x2 2sin2 x22cos x2 sin x2 2cos2 x2=2sin x2 (cos x2 sin x2 )2cos x2 (sin x2 cos x2 )=tg x2 .∵f(-x) =tg(- x2 ) =-tg x2 =- f(x) ,所以函数 y=1 sinx-cosx1 sinx cosx 是奇函数 .初看 ,解答正确 ,其实结论是错误的 ,原函数既非奇函数也非偶函数 .之所以会产生这种情况 ,究其原因 ,一方面…  相似文献   

13.
近年来 ,高考题中关于求三角函数的值域或最值的问题常有所见 ,体现“三强一广” ,即概念性强、综合性强、灵活性强 ,涉及的知识面广 .因此 ,正确理解、深入研究这类问题 ,对发展学生的思维 ,提高他们的分析和解决问题能力大有裨益 .下面对此类问题作一归纳 ,希对学生有所帮助 .1 y =asinx bcosx型的函数解决这类问题可作“合一变形”处理 ,即化原函数为y =a2 b2 sin(x φ)的形式 ,其中tgφ =ba ,φ与点 (a ,b)同像限 .例 1 求函数y =sin2x 2cos2 x的最大值与最小值 .解 y =sin2x 1 cos2…  相似文献   

14.
关于函数y=asintx+bcostx的最值 ,文[1 ] 应用赫尔德 (Holder)不等式给出了如下定理 :定理 函数y=asintx+bcostx ,x∈ (0 ,π2 ) ,a、b为正常数 ,且t ∈R(t≠ 0 ,2 ) ,在x =arctan(ab) 1 2 -t 处取得最值 (a22 -t +b22 -t) 2 -t2 ,其中(1)当t∈ (0 ,2 )时 ,y取得最大值 ;(2 )当t∈ (2 ,+∞ )时 ,y取得最小值 ;(3)当t∈ (-∞ ,0 )时 ,y取得最小值 .本文应用凸函数的性质给出上述定理的另一证明及其推广 .首先介绍凸函数的一个性质 (引理 ) :引理 ①设函数f(u)是定义在区间Ⅰ…  相似文献   

15.
矛盾的普遍性寓于特殊性之中。灵活运用已知条件中的特殊点 ,可以巧妙地解决三角函数图象与性质中的以下几类常见问题。1 与三角函数图象变换的位移有关的问题关于三角函数图象变换的位移 ,只需抓住图象的“起点”变化。这类题多以选择填空的形式出现。一般地 ,在“五点法”作图时 ,与ωx φ =0所对应的点( -φω ,0 ) ,通常称“起点”。例 1 把函数 y =sin2x cos2x的图象适当变动可以得到 y =sin2x -cos2x的图象 ,这种变动可以是沿x轴 (   )(A)向左平移 π3    (B)向右平移 π4(C)向左平移 π2     (D…  相似文献   

16.
在△ABC中 ,有著名的Finsler Hadwiger不等式∑a2 ≥ 43△ + ∑(b-c) 2 .①其中a、b、c、△分别是△ABC三边、面积 ,∑为循环和 .文 [1 ]将其加强为∑a2 ≥ 43△ + ∑(b -c) 2 +∑[b(c+a -b) -c(a +b -c) ]2 .②事实上 ,F—H不等式①可以这样得到 :对任意正数x、y、z,有恒等式(xy +xz+yz) 2=3xyz(x+y +z) + 12 [x2 (y -z) 2+y2 (x -z) 2 +z2 (x -y) 2 ].③在③中 ,令x =s -a ,y =s -b ,z =s-c,得[∑(s-b) (s-c) ]2=3s(s-a) (s-b) (s-c)+ 12 ∑(s-a)…  相似文献   

17.
一、选择题 (本大题共 12小题 ,每小题 5分 ,共60分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 )1 已知集合M ={x| -1≤x≤ 1},N ={y|-1≤y≤ 1},则在下列图中 ,不是从集合M到集合N的映射的是 (   )2 设复数z =i(1_ 3i) ,那么argz等于(   )  (A) 2π3   (B) 5π6  (C) 4π3   (D) π63 已知α是第三象限角 ,则下列等式中可能成立的是 (   )  (A)sinα +cosα=1.2  (B)sinα+cosα =-0 .9  (C)sinαcosα =3  (D)sinα+cosα =-1.24 已知正n棱台 (n∈N ,…  相似文献   

18.
例说向量的广泛应用   总被引:1,自引:0,他引:1  
高考命题中对知识综合性的考查 ,往往在知识网络交汇点上设计试题 ,而向量则是三角函数、解析几何等多学科知识的交汇点 ,因此也是新高考的命题热点 .例 1 已知 (x-1) 2 + (y-2 ) 2 =2 5 ,求3x+ 4y的最值 .解 设a =(3 ,4) ,b =(x-1,y -2 ) ,a与b的夹角为θ,则3x + 4y =a·b + 11=|a||b|cosθ+ 11=2 5cosθ + 11.∴ 3x+ 4y的最大值为 3 6,最小值为-14 .例 2 已知x2 + y2 =4,a2 +b2 =6,求ax +by的最值 .解 设a=(x ,y) ,b=(a ,b) ,a与b的夹角为θ ,则ax +by =a·b=|a||b|cosθ…  相似文献   

19.
本文从“数”、“形”两个角度揭示椭圆 (双曲线 )两种定义的等价关系 ,作为教学之后的补充与提高 ,无疑对于学生课外思考钻研 ,及培养学生思维能力都十分有利 .以双曲线为例 ,证明双曲线的第二定义 .设M (x ,y)是双曲线 x2a2 - y2b2 =1上任意一点 ,则有x2a2 - y2b2 =1  (c2 =a2 b2 ) (c2 -a2 )x2 -a2 y2 =a2 (c2 -a2 ) (c2a2 - 1)x2 - y2 =c2 -a2 x2 y2 c2 =a2 c2a2 x2 ( )( )两边同减 2cx ,得(x-c) 2 y2 =c2a2 (x- a2c) 2 ,从而有 (x-c) 2 y2x- a2c=ca .这表明M到定点…  相似文献   

20.
利用函数的单调性解题是数学的重要解题思想 .函数y=x 1x 在 (0 ,1 )内单调递减 ,在 (1 , ∞)内单调递增 .下面通过几个例子谈谈利用这一性质解题 .例 1 求函数y =x2 5x2 4的最小值 .解 令x2 4=t,则y =t 1t,t 2 .因为在t 2时 ,函数y=t 1t 单调递增 ,所以函数在t=2时取得最小值 ,最小值 =2 12 =52 .例 2 已知函数y =cos2 x 6cosx 1 0cosx 3 ,x∈ [0 ,π],求值域 .解 令cosx 3 =t,则y=t 1t,t∈[2 ,4].因为函数y =t 1t 在 [2 ,4]上单调递增 ,所以在t =2时函数取得最小值 =2 12 =52 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号