首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

2.
学生经常产生一些似是而非的错误,如: 例1 求函数y=x (x~2-3x 2)~(1/2)的值域。 错解 由y-x=x~2-3x 2)~(1/2) 可得 (y-x)~2=x~2-3x 2. 整理得 x=(2-y~2)/(3-2y)(y≠3/2). 因而函数的值域为{y|y∈R,y≠3/2}.  相似文献   

3.
1.求值域 例1 求函数 y=3-2x/2+3x(x〈1,且x≠-2/3)的值域  相似文献   

4.
在求形如 y =ax2 bx cdx2 ex f的值域时 ,可将函数转化为关于x的二次方程 ,通过判别式求出函数的值域 .但利用Δ法求函数值域时应注意以下两个问题 .1 .如果函数 y =ax2 bx cdx2 ex f(d≠ 0 )的分母含关于x的二次三项式 ,分子的最高次是二次或一次或零次 ,函数的定义域为R ,可采用Δ法求函数的值域 .例 1 求函数 y=2x2 2x 3x2 x 1 的值域 .解 :令 g(x) =x2 x 1 ,其Δ =1 2 -4=-3 <0 ,∴故 g(x) =x2 x 1 >,函数 g(x)的定义域为R .∴已知函数可化成(y -2 )x2 (y -2 )x y -3 =0 .∵x∈R且 y≠ 2 ,∴关于x的方程应有Δ =(y…  相似文献   

5.
1 忽视函数的定义域、值域,从而导致错误 例1 求函数y=2tan x/1-tan^2 x的周期。 错解:因为函数y=2tanx/1-tan^2x=tan2x,所以它的周期是T=π/2,  相似文献   

6.
求函数的值域涉及到的知识面很广,是教学中的难点之一,笔者在教学中教给学生用下列方法求函数的值域,取得了理想的效果。 一、运用方程的思想求函数值域 运用方程的思想求函数值域,就是将函数y=f(x)的解析式视为关于x的方程(y为参数),只需根据方程有实数解的条件,求出使该方程在函数定义域内有解的所有y值的集合,则此集合目即为函数y=f(x)的值域。 例1 求函数y=5x-1/2x-3(x∑R,且x≠3/2)的值域, 解:把函数式看成关于x的方程,变形得 (2y-5)x=3y 1, 由此可见,原方程在函数定义域内有解的充要条件是2y-5≠0,即y≠5/2,从而可确定所求函数的值域为(-∞,5/2)U(5/2, ∞)。  相似文献   

7.
一、反函数策略例1求函数y=3-x2x+5的值域.分析此题可用“观察法”,但形如y=ax+bcx+d的值域问题,用反函数法尤为简洁.解函数y=3-x2x+5的反函数为y=3-5x2x+1,而y=3-5x2x+1的定义域为x|x≠-12 ,∴原函数的值域为y|y≠-12 .二、换元策略例2求函数y=2x+41-x姨的值域.分析可将原式2x移至等式左边后,再两边平方,用“Δ法”求解,但是值域范围有可能扩大.若令t=1-x姨≥0,则x=1-t2,从而将原式转化为在限制条件下,即t≥0时二次函数的值域问题.解令t=1-x姨≥0,则x=1-t2,故原式为y=2穴1-t2雪+4t=-2穴t-1)2+4≤4,∴原函数的值域为(-∞,4].三、数形结合…  相似文献   

8.
求函数值域问题是高中数学的重点和难点,也是高考的热点.本文对求函数值域常用方法作些归纳,供同学们参考.一、分离常数法例1求函数y=x2-xx2-x+2的值域.解:y=x2x-2-x+x2=1-x2-2x+2,而x2-x+2=x-212+74≥47,所以0相似文献   

9.
一、先看几道用判别式解题造成错误的实例 例1 求函数的值域。(见苏州大学《中学数学》统辑部94年发行《高三数学与测试》一书p14页)。 为具体起见,改用数字系数,求函数的值域。 解:∵原函数的定义域是:{x|x≠1且x≠-3,x∈R},将原函数化为则有①当y≠1时,得(2y 3)~2 4(y-1)(3y 2)≥0’整理得(4y 1)~2≥0,故y为≠1的一切实数;  相似文献   

10.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

11.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

12.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

13.
有一类函数的值域或最值可用实系数一元二次方程的根的判别式Δ去求解 .在解题过程中 ,我们要小心使用Δ .例 1 求函数 y =x2 -x - 1x2 -x 1(x∈R)的值域 .错解 :原式可化为 (y - 1)x2 - (y - 1)x y 1=0 .因为x∈R ,所以Δ =[- (y- 1) ]2 - 4 (y - 1) (y 1)≥ 0 ,解得 - 53≤y≤ 1,故原函数的值域为 - 53≤y≤ 1.分析原式在化为关于x的方程 (y - 1)x2 - (y - 1)x y 1=0后 ,在使用Δ时 ,忽略了二次项的系数 y - 1≠ 0的条件 ,须知只有限定 y - 1≠ 0时 ,才能用根的判别式Δ去求解 .正解 :因为x2 -x 1=x - 122 34≠ 0 ,所以原式可化…  相似文献   

14.
定比分点公式除可以用来求点坐标、证n点共线外,还有其它用途. 1.求值域例1 求函数y=1-x2/1 x2的值域.解 设x2=λ,则 y=1 λ(-1)/1 λ,即 y分1,-1所得的比为λ.又 λ≥0,所以 y∈(-1,1]. 2.比较大小 例2 已知f(x)=ax2 bx c(a≠0),  相似文献   

15.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

16.
在求函数的值域中,我们常碰到这样的一道题: 题 求函数y=x+1/x(x≠0)的值域.  相似文献   

17.
一单调性法例1 求函数r=log0.5(2x-x2+3)的值域. 解:∵2x-x2+3=-(x-1)2+4,∴0<2x-x2+3≤4,又0.5<1, 由r=log0.5x的单调性可知值域为[-2,+∞). 点评:利用函数的单调性是求函数值域的一种常见方法. 二反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域.  相似文献   

18.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

19.
从探究y=1/f(x)型函数的值域谈起   总被引:3,自引:0,他引:3  
1.问题提出的背景很多与《全日制普通高级中学教科书(必修·第一册(上)》配套的资料上,都有这样一类题目:求函数y=1/x2-6x 1的值域. 大多数学生是这样回答的:因为x2-6x 1=(x-3)2-8≥-8, 所以1/x2-6x 1 ≤-1/8,即原函数的值域是{y|y≤-1/8}. 类似的错误经过反复讲评、订正,但收效甚微.于是决定以"探讨y=1/f(x)型函数的值域"为课题上一堂专题课.  相似文献   

20.
<正>判别式法是高中求分式函数值域的常用方法.但由于对此方法的原理不很清楚,许多学生在解题过程中对一些条件不能正确的处理,从而导致解题出错.下面以几个题目为例,说明判别式法的原理以及在使用过程中一些要注意的地方.例1求函数f(x)=x2-2x-32x2+2x+1的值域.解:∵2x2+2x+1=2 x+()122+12>0恒成立,∴函数的定义域为R.图1将原函数等价变形为关于x的方程:(2y-1)x2+(2y+2)x+y+3=0……(*)(1)2y-1=0即y=12时,代入(*)式,求得x=-76.∴y可以取到12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号