首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正问题:过点M(2,1)的直线l分别与x,y的正半轴交于A,B两点,O为坐标原点,当△AOB面积最小时,求直线l的方程。·y x B O A M(2,1)探究一:解法探究分析一:由于题中的直线l斜率存在且过定点M(2,1),所以在设直线l的方程上可优先选用点斜式。利用直线l方程可求出直线l在x,y上的截距,然后利用面积公式进行求解。  相似文献   

2.
数学问答     
17.已知直线x y=0,x-y=0,点P(1,2),过点P作直线l与这条直线交于x轴上方的两点A、B,当△ABO面积最小时,求l直线方程.(广西张晓妹)学生数理化中高二版解:过P(1,2)作PD⊥OA于D,作PE⊥OB于E.则PD=22,PE=322.设AD=t,则PBEE=APDDBE=PEA·DPD=23t.S△ABO=12OA·OB=12322 t22 23t=213 22t 94t2=23 42t 29t≥23 42·229=3.当且仅当t=29t时,即t=322时上式取等号,此时A(2,2).故直线l的方程为y=2.(河南介志刚)18.设点C(a,b)(ab≠0)为定点,过点C作两条互相垂直的直线l1与l2,若l1交x轴于A点,l2交y轴于B点,求:(1)线段AB的中点M(x,y)…  相似文献   

3.
<正>问题设椭圆E:x2/a2+y2/b2=1(a>b>0)的中心为O,A、B是椭圆上的两点(A、B、O不共线),求△AOB面积的最大值.对于这个问题,笔者经过探讨,得到了如下两个有趣的结论.定理1设椭圆E:x2/a2+y2/b2=1(a>b>0)的中心为O,A、B是椭圆E上的两点(A、B、O不共线),则当且仅当直线AB与椭圆F:x2/a2+y2/b2=1/2相切时,S△AOB取得最大值1/2ab.  相似文献   

4.
题目 已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点. (Ⅰ)求M的轨迹方程; (Ⅱ)当|OP| =|OM|时,求l的方程及ΔPOM的面积.  相似文献   

5.
定理已知圆锥曲线的准线与x轴相交于点E,过相应焦点F的直线与圆锥曲线相交于A、B两点,BC//x轴交准线于C点,则AC经过线段EF的中点.证明(1)若圆锥曲线为抛物线,不妨设抛物线的方程为2y=2px(p>0).当直线AB的斜率不存在时,显然定理成立.当直线AB的斜率存在时,可设直线AB的方程为:y=  相似文献   

6.
处理富于变化的一直线与某一圆锥曲线的综合问题,方法之一就是退到一元二次方程解决,其三步曲是:①直线方程代入圆锥曲线方程;②利用一元二次方程的韦达定理或判别式;③想干嘛就干嘛·本文意在揭示“想干嘛”有哪些多样化的特征,“就干嘛”又有哪些规律化的玄机·一、角平分线、弦长(或面积)问题例1如图1,过点P(1,2)的直线与抛物线y=x2相交于A、B两点,O为坐标原点,当直线OP平分∠AOB时,求直线AB的方程及△AOB的面积·解:直线y-2=k(x-1),代入y=x2得x2-kx+k-2=0·设交点A(x1,y1)、B(x2,y2),由韦达定理x1+x2=k,x1x2=k-2·因为直线OP平…  相似文献   

7.
题过定点尸(2,3)作直线l,分别与x轴、y轴的正方向交于A、B两点,求使△AOB的面积最小时的直线方程. 经过求解,我的答案是 3x Zy一12- 若将尸点坐标改为(2,1)线是x Zy一4一0. 于是我猜想:O.,满足条件的直即m:a一n:b. 在一本参考书上有这么一道题: 已知直线x一y一O,x y一O,点尸(1,2).过点尸作直线l与这两条直线交于x轴上方的两点A、B.当S△AoB面积最小时,求直线l的方程. 如图1所示,直线l过定点尸(m,n),分别与x轴、y轴的正方向交于A(a,o),B(o,b)两点,当△AOB面积最小时, 书上给的参考答案很繁琐,下面我用上述结论和坐标变换来解: 如图2…  相似文献   

8.
正定理1已知AB是圆C:2 2 2x+y=r的直径,直线l与x轴垂直,过圆C上任意一点P(不同于A,B)作直线PA与PB分别交直线l于M,N两A P O B Q N M x y点,记线段MN的中点为Q,则直线PQ与圆相切.证明设点0 0P(x,y),直线l为x=m,  相似文献   

9.
.利用向量模的概念图 1【例 1】 已知点P是直线y=1上的动点 ,Q是OP上的动点 ,且|OP|·|OQ| =1,求动点Q的轨迹方程(如图 1) .解 :设Q(x ,y) ,(y >0 ) ,P(x1 ,1)∵ |OP|·|OQ| =1,∴x21 +1· x2 +y2 =1即 (x21 +1) (x2 +y2 ) =1①又OP ,OQ共线 ,OP∥OQ ,∴x -x1 y =0 ,即x1 =xy ②把②代入① ,并整理 ,得图 2x2 +y2 -x =0(y>0 ) .2 .利用非零向量垂直的充要条件【例 2】 已知圆x2 +(y-1) 2 =1上定点A( 0 ,2 ) ,动点B .直线AB交x轴于点C ,过C与x轴垂直的直线交弦OB的延长线于圆外一点P(如图 2 ) ,求P点的轨迹方程 .解 …  相似文献   

10.
例1已知圆C:x2+y2-2x-4y+m=0(m<5),若圆与直线l:x+2y-4=0交A、B两点,且OA⊥OB(O为坐标原点),求m的值.分析处理圆与直线相交问题时,常用到直角三角形(由弦心距、半径、弦长一半组成),即△CMB,其中CB包含所求,CM容易求,问题转化为只要求出MB即可,而MB是Rt△AOB斜边的一半,与OM相等,只要求出OM即可.M点的坐标可由直线OC和AB联立得到,至此,问题得到解决.具体  相似文献   

11.
题目:已知椭圆x92 y42=1上总有关于直线l:y=x m对称的两点,试求m的取值范围.一、运用二次方程的判别式求参数的取值范围解法1:设A(x1,y1)、B(x2,y2)是椭圆上关于直线l对称的两点,线段AB的中点为C(x0,y0).因为AB⊥l,所以直线AB的斜率为-1,于是再设直线AB的方程:y=-x b.由于A、B点既在椭圆上,又在垂直于l的直线AB上,点C既在直线AB:y0=-x0 b上,又在直线l:y0=x0 m上,从而联立:x29 y42=1y=-x b,消去y得:13x2-18bx 9b2-36=0,依韦达定理和中点坐标公式得:2x0=x1 x2=1183b,∴x0=193b.从而y0=-x0 b=143b.于是有413b=193b m,得m=-153b,而由于A…  相似文献   

12.
用代数方法研究几何问题是解析几何的本质特征,很多解几题中的一些图形性质和“平几”知识相联系,因此,重视“平几”知识的应用,将使问题更迅速地迎刃而解.1充分发挥三角形,特别是直角三角形的解题功能例1过点P(a,b)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.解法一设点M(x,y),则点A(2x,0),点B(0,2y),∵l1⊥l2,∴2PM=AB,又∵PM=(x?a)2 (y?b)2,AB=(2x)2 (2y)2,∴2(x?a)2 (y?b)2=(2x)2 (2y)2,化简得:所求点M的轨迹方程为:2ax 2by?a2?b2=0.解法二设点M(x,y),则点A(2x,0),点B(0,2y).∵l1⊥l2,…  相似文献   

13.
题目经过点P(4,3)的直线l与x轴、y轴的正半轴分别交于A、B两点,当△AOB的面积最小时,求直线l的方程.解法1:利用直线的点斜式方程.  相似文献   

14.
1.定义:如果一条直线l交圆锥曲线C于A、B两点,则称直线l为圆锥曲线C的割线. 2.公式:设A(x1,y1)、B(x2,y2)、AB的中点N(x0,y0). 椭圆:x2/a2+y2/b2=1的割线AB,则kAB=-b2x0/a2y0. 双曲线:x2/a2-y2/b2=1的割线AB,则KAB=  相似文献   

15.
题目过圆C:(x-1)^2+(y-1)^2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图1),若这四部分图形面积满足SⅠ+SⅣ=SⅡ+SⅢ,则直线AB有( )  相似文献   

16.
经过对抛物线上存在轴对称点的条件的探究,获得了下面的结果.定理1:设抛物线E:x2=2py(p>0)和直线l:y=kx b,当且仅当2k22 1相似文献   

17.
题目过圆C:(x-1)2+(y-1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图1),若这四部分图形面积满足S1+SN=SⅡ+SⅢ,则这样的直线AB有( )  相似文献   

18.
文[1]研究了椭圆的一个性质,受文[1]启发,笔者通过探究发现,将文[1]定理1,定理2条件中椭圆的右顶点和上顶点A,B分别换成椭圆共轭直径的两个端点,结论仍然成立. 性质1 设A,B是椭圆x2/a2+y2/b2=1(a>b>0)上的两点,O是坐标原点,射线OA,OB的斜率的乘积为-b2/a2,点M是线段AB的中点,直线OM交椭圆于C,D两点,ΔABC,△ABD的面积分别记为S1,S2,则S1/S2=(√2-1)2.  相似文献   

19.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

20.
张景中教授在《从数学教育到教育数学》(四川教育出版社,1989年出版)一书中,针对中学数学教育提出了欧氏几何以质量公理体系和以面积理论为核心的解题方法,其中重要的定理是:共边比例定理:若直线PQ和直线AB相交于M点,则S△PAB∶S△QAB=PM∶QM;共角比例题定理:若在△ABC和△A′B′C′中,∠A=∠A′,若∠A ∠A′=180°,则S△ABC∶S△A′B′C′=AB·AC∶A′B′·A′C′,这两个定理在几何证题中是行之有效的.笔者在此基础上提出两个定理:定理1等高不等底的两个三角形面积之比等于对应底边的比.定理2等底不等高的两个三角形面积…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号