首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

2.
Tremendous efforts have been dedicated to developing high-performance energy storage devices based on the micro- or nano-manipulation of novel carbon electrodes, as certain nanocarbons are perceived to have advantages such as high specific surface areas, superior electric conductivities, excellent mechanical properties and so on. In typical electrochemical electrodes, ions are intercalated/deintercalated into/from the bulk (for batteries) or adsorbed/desorbed on/from the surface (for electrochemical capacitors). Fast ionic transport, significantly determined by ionic channels in active electrodes or supporting materials, is a prerequisite for the efficient energy storage with carbons. In this report, we summarize recent design strategies for ionic channels in novel carbons and give comments on the promising features based on those carbons towards tailorable ionic channels.  相似文献   

3.
The effects of nanoconfined water and the charge storage mechanism are crucial to achieving the ultrahigh electrochemical performance of two-dimensional transition metal carbides (MXenes). We propose a facile method to manipulate nanoconfined water through surface chemistry modification. By introducing oxygen and nitrogen surface groups, more active sites were created for Ti3C2 MXene, and the interlayer spacing was significantly increased by accommodating three-layer nanoconfined water. Exceptionally high capacitance of 550 F g–1 (2000 F cm–3) was obtained with outstanding high-rate performance. The atomic scale elucidation of the layer-dependent properties of nanoconfined water and pseudocapacitive charge storage was deeply probed through a combination of ‘computational and experimental microscopy’. We believe that an understanding of, and a manipulation strategy for, nanoconfined water will shed light on ways to improve the electrochemical performance of MXene and other two-dimensional materials.  相似文献   

4.
Flexible batteries, which maintain their functions potently under various mechanical deformations, attract increasing interest due to potential applications in emerging portable and wearable electronics. Significant efforts have been devoted to material synthesis and structural designs to realize the mechanical flexibility of various batteries. Carbon nanotubes (CNTs) have a unique one-dimensional (1D) nanostructure and are convenient to further assemble into diverse macroscopic structures, such as 1D fibers, 2D films and 3D sponges/aerogels. Due to their outstanding mechanical and electrical properties, CNTs and CNT-based hybrid materials are superior building blocks for different components in flexible batteries. This review summarizes recent progress on the application of CNTs in developing flexible batteries, from closed-system to open-system batteries, with a focus on different structural designs of CNT-based material systems and their roles in various batteries. We also provide perspectives on the challenges and future research directions for realizing practical applications of CNT-based flexible batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号