首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
美国《数学杂志》2005年二月问题征解1714:设m,n,x,y,z∈R+,且x+y+z=1,证明:44()()()()x ymx+ny my+nx+my+nz mz+ny421()()3()z+mz+nx mx+nz≥m+n.(1)文[1]将其推广为:设λ,ai∈R+(i=1,2,n),且1niia=∑=1,an+1=a1,则当k≥4或k≤0时,有321(1)(1)(1)nk kii i i i ia naλa aλaλ?=++∑++≥+.本文在文[1]的基础上对(1)式进行再推广:命题1设m,n,x,y,z∈R+,且x+y+z=1,α,β,γ∈R+,且α?(β+γ)=2,则()()()()x ymx ny my nx my nz mz nyαα+β+γ++β+γ1()()3()zmz nx mx nz m nα++β+γ≥+β+γ.命题2设m,n,x,y,z∈R+,且x+y+z=1,β,γ,l∈…  相似文献   

2.
柯西不等式的再推广   总被引:1,自引:0,他引:1  
黄毅老师在文 [1]中给出了柯西不等式的一个变形及其推广 ,本文在此基础上作进一步的推广 .引理 1(赫尔德不等式 )已知 ai,bi ∈ R+ ,i = 1,2 ,… ,n且α +β =1,1)若αβ >0 ,则∑ni=1aαibβi ≤ ( ∑ni=1ai)α( ∑ni=1bi)β2 )若αβ <0 ,则∑ni=1aαibβi ≥ ( ∑ni=1ai) α( ∑ni=1bi) β引理 2 已知 xi,yi ∈ R+ ,i =1,2 ,… ,n1)若 r >1或 r <0 ,则∑ni=1xiyri ≥ ( ∑ni=1yi) r( ∑ni =1x 11 -ri ) 1 -r2 )若 0 相似文献   

3.
由不等式a2 + (λb) 2 ≥ 2λab(a,b∈R ,λ为参数 ) ,得a2 ≥ 2λab-λ2 b2 .由此得到如下一个推论 :若b >0 ,则a2b ≥ 2λa-λ2 b. ( )对于参数λ的任一实数值 ,不等式 ( )总是成立的 ,当且仅当λ =ab 时 ,取等号 .值得重视和有趣的是应用这个不等式可以简捷、巧妙地证明一类分式不等式 .现举例说明 .例 1 设xi >0 (i =1 ,2 ,… ,n) ,求证 :∑ni=1x2 ixi+1≥ ∑ni=1xi(xn+1 =x1 ) .证明 由xi >0及 ( ) ,得x2 ixi+1≥ 2λxi-λ2 xi+1 .∴∑ni=1x2 ixi+1≥ ∑ni=1(2λxi-λ2 xi+1 )=(2λ -λ2 ) ∑ni=1xi.取λ=1 ,原不等式得证 .例 2 设…  相似文献   

4.
定理 设ai,bi∈R+,i =1 ,2 ,… ,n .m ,n∈N ,∑bmi =∑ni=1bmi =1 ,p =mm +n,则∑ aibni≥ (∑api) 1p.①证明 :①等价于∑api/ (∑ aibni) p=∑ (ai∑ai/bni) p≤ 1 .②记Ai=ai/bni,则②的中间式等于∑ (Aibni∑Ai) p=∑ [Ami(bmi) n(∑Ai) m]1m +n≤∑ (mAi∑Ai+nbmi) / (m +n) =m +n∑bmim +n =1 .等式当且仅当 Ai∑Ai=bmi(i=1 ,2 ,… ,n) ,即 a1bm +n1=… =anbm +nn时成立 .局部对称权方和不等式@石长伟$陕西省西安市大华中学1 杨克昌.权方和不等式.数学通讯,1982,6…  相似文献   

5.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

6.
本刊文 [2 ]用几何方法改进并证明了文[1]出现的不等式 :已知 x,y∈ R,求证x2 +y2 +( x -1) 2 +y2 +x2 +( y -1) 2 ≥ 22 ( 3 +1) .这体现了由数到形的沟通 ,但还不是完整意义上的数形结合 ,本文补充由形到数的沟通 .首先将费马点所提供的几何意义 ,用复数乘法把 OP,AP,BP首尾连接 ,再用复数模不等式|z1 |+|z2 |+|z3 |≥ |z1 +z2 +z3 |1拉直 ,得出证明 1;然后把复数运算“翻译”为配方 ,并把 1改写为∑3i= 1a2i +b2i ≥ ( ∑3i=1ai) 2 +( ∑3i =1bi) 2 ,2得出更直接的代数证明 .其中的复数证法能说明配方的来由 ,而不是妙手偶得的技巧 .…  相似文献   

7.
命题1 若n∑i=1 xi^p=m,p≥2,则n∑i=1 xi≤p√n^p-1 m,当且仅当x1=x2=…=xn=p√m/n时等号成立。  相似文献   

8.
△ABC的内切圆、外接圆半径分别为r,R,大家知道有著名的Euler公式:R≥2r. 上述公式证明方法有多种,本文将给出△ABC中内切圆代换下的证明. 为此,我们先给出有关内切圆的一些基本知识点,这些在不等式证明中时是极其有用的. 如图1,设a=x+y,b=y+z,c =z + x,△ABC的内切圆、外接圆半径分别为r,R,面积为S,半周长p=a+b+c/2=x+y+z,由海伦公式知S=√p(p-a)(p-b)(p-c) =√xyz(x+y+z),注意到S=pr=a+b+c/2 r,故r=S/P=√xyz/x+y+z,而S=1/2absinC=abc/4R,故R=abc/4S=(x+y)(y+z)(z+x)/4√xyz(x+y+z),故=R/2r=(x+y)(y+z)(z+x)/8xyz≥8xyz/8xyz=1,故R≥2r.  相似文献   

9.
第39届IMO预选题11[1]如下:设x,y,z是正实数,且xyz=1,证明:x3 y3(1 y)(1 z)(1 z)(1 x) z3≥.3(1)(1 x)(1 y)4文[2]将(1)式推广为:定理1设xi∈R (i=1,2,L,n),且x1x2Lxn=1,a≥1,n≥2,有nn∑(xii=1a x1)L(a xi?1)(a xi 1)L(a xn)≥n.(2)?1(a 1)n本文给出定理1的一个推广:定理2设xi  相似文献   

10.
对Shapiro不等式进行了研究,并将其进一步改进如下:若茹xi〉0,α〉0,λ∈R,μ∈R,t∈R,λ-μx^ti〉0(i=1,2,…,n),则当rs〉0,r-s≥α(或r≤0,s〉0)时,有(n∑i=1x^r/(λ-μx^si))^a≥n^a+t-r (n^∑i=1x^ia)^r/(n∑i-1(λ-μx^ti)^a)^s,(2)当rs〉0,r—s〈a,n〉1时,有(n∑i x^ri/(λ-μx^si)^s)^a〉(n^∑i=1x^ai)^r/(n∑i-1(λ-μx^ti)^a)^s,(3)当r〉0,s〈0,r—s≤a时,有(n∑i x^ri/(λ-μx^ti)^s)≤n^a+s-r(n^∑i=1x^ia)^r/(n∑i-1(λ-μx^ti)^a),所得结果改进和推广了最近文献的一些相应结果。  相似文献   

11.
文[1]利用均值不等式给出一道最值问题的通解(法一),并将该问题作了进一步的推广;文[2]用向量法对该问题及其推广进行解答(法二).本文将应用空间几何知识和柯西不等式,给出该问题及其推广的另外两种解法(法三,法四). 文[1]的问题及其推广是: 问题 已知a,b,c,x, y,z 是实数,a2 b2 c2=1, x2 y2 z2 = 9 ,求ax by cz 的最大值. 问题推广 已知ai,bi(i =1,2,L,n)且∑an n n 2 = p, 2 i ∑b i = q ,求 aibi 的最大值. ∑ i=1 i=1 i=1 …  相似文献   

12.
柯西不等式常活跃在各类考试中,其重要变式:若xi,yi〉0,则 n∑i=1 yi^2/xi≥(n∑i=1yi)^2/n∑i=1xi(*) 当且仪x1/yi=x2/y2=…=xn/yn时等号成立.  相似文献   

13.
文[1]中给出了两个命题:命题1是(x-x1)2+(y-y1)2≥(x2+y2-x12+y21)2.1这个命题虽然是正确的,但是文[1]中借助于向量方法设a=(x,y),b=(x1,y1),然后利用不等式a-b≥a-b导出1,这是不妥当的.如果修正为利用不等式a-b≥a-b,进而有a-b 2≥(a-b)2,然后最终得出1,那就没有问题了.命题2是(x-∑ni=1xi)2+(y-∑ni=1yi)2≥(x2+y2-∑ni=1xi2+y2i)2.2这个命题是一个错误的命题.例如取n=2,x=y=1,x1=y1=-1,x2=y2=2,则2的左端等于0,右端等于8,所以2式不成立.为什么会产生这个错误呢?原因是,依原文中用向量方法推导,当令a=(x,y),b=∑ni=1ci,ci=(xi,yi)时,虽然…  相似文献   

14.
美国《数学杂志》2005年二月问题征解1714[1]为:设m,n,x,y,z∈R ,且x y z=1.证明:44()()()()x ymx ny my nx my nz mz ny421()()3()z mz nx mx nz≥m n.(1)本文给出了(1)式的一个推广:定理设λ,ai∈R (i=1,2,L n),且a1 a2 L an=1,an 1=a1.则当k≥4或k≤0时,有321(1)(1)(1)nk ki  相似文献   

15.
本文讨论了n个正整数的和与积相等的一个必要条件,并证明了两个与素数、合数有关的结论. 结论1:若n(n≥2)个正整数a1,a2,…,an满足条件n∑i=1ai=n∏i=1ai,则ai≤n(i=1,2,…,n). 证明:(1)当n=2时,a1·a2-(a1+a2)=(a1-1)·(a2-1)-1≥0,当且仅当a1=a2=2时等号成立,故a1·a2=(a1+a2)时a1≤2,a2≤2,符合结论1. (2)当n≥3时,设a1≤a2≤…≤an.令a1=a2=…=an-2=1,an-1=2,an=n,则n∑i=1ai=n∏i=1ai=2n.此时ai≤n(i=1,2,…,n). 又设存在n(n≥2)个正整数b1,b2,…,bn满足条件1≤b1≤b2≤…≤bn-1≤bn,bn>n,且n∑i=1bi=n∏i=1bi.不妨令bi=1+ti(i=1,2,…,n-1,ti∈N),bn=n+tn(n∈N+).  相似文献   

16.
用初等简洁的方法证明了一个比已有结果更加广泛的分析不等式:设k,n∈N,μ>0,xi>0,i=1,…,n,且∑ni=1xi=λ,则当k≤n-μ+1时有,Ekλx1-μ,…,λxn-μ≥nk(n-μ)k,等号成立当且仅当x1=…=xn=λn.  相似文献   

17.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

18.
命题1 设ai≥λ>0(或0<αi≤λ)(i=1,2,…,n,n≥2),则a1+a2+…+an≤a1a2…an/λ^n-1+(n-1)λ  相似文献   

19.
文[1]探讨了如下问题[2]:设x、y、z为非负实数,且x y z=32,求式子x3y y3z z3x的最大值;并猜想:设x、y、z为非负实数,n∈N*,n≥2,则xny ynz znx≤(n n1n)n 1(x y z)n 1.经笔者研究,有如下更一般的结果(本文中,xm 1=x1)定理设∑mi=1xi=1,xi≥0,m,n∈N*,m≥3,n≥2,则∑mi=1xinxi 1≤nn/(n 1)n 1.证明(数学归纳法)当m=3时,需证x1nx2 x2nx3 xn3x1≤nn/(n 1)n 1;考虑到不等式中字母的轮换性,不妨设x1=max(xi):1)若x1≥x2≥x3,则x1nx2 x2nx3 x3nx1≤x1nx2 2x1n-1x3x2≤(x1n nx1n-1x3)x2≤(x1 x3)nx2=(1-x2)n×nx2/n≤[n/(n 1)]n 1/n=nn/(n 1)n 1;2…  相似文献   

20.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号