首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线共点的问题是平面几何中的一类重要问题。同三角形有关的线共点的问题主要为 1.外心定理三角形三边的垂直平分线共点。 2.内心定理三角形三内角的平分线共点。 3.垂心定理三角形的三条高共点。 4.重心定理三角形的三中线共点。  相似文献   

2.
文[1]对于三角形中的线共点问题给予了解析证明,读后颇受启发。但因[1]中所述三线共点和三点共线的充要条件的两定理(Ceva定理、Menelaus定理)其条件的必要性正是初中平几教材中的两习题,该文对这两定理的条件必要性的证明都采用反证法并运用条件的充分性而获证,而条件充分性的证明,又都超出了初中知识范围。从指导教学出发,这对引导初中学生运用解析几何  相似文献   

3.
本文用平面几何和立体几何综合证法概述锡瓦(Ceva)定理引出的定理系,从而把三角形的重心、垂心、内心、旁心统一成三角形的广义重心,把相应的诸线统一成三角形的广义中线,回答了中学生关于“三角形为什么有那么多种三线共点?”一类问题。我们还将发现,只要对四面体类似地定义其广义中线和广义重心,则对于四面体也存在有类似于三角形的判断诸线共点的充要条件。定理1.(锡瓦定理)设 D、E、F 分别是三角形三边 BC、AC、AB 上的定点,则 AD、BE、CF 共点的充要条件为  相似文献   

4.
意大利数学家塞瓦(G.Ceva)在1678年发表了下面十分有用的定理:塞瓦定理.设X、Y、Z分别是三角形ABC三边BC、CA、AB上的点,如果直线Ax、ByOZ共点,则BX/XC·CY/YA·AZ/ZB=1逆定理.设X、Y、Z分别是三角形三边BC、CA、AB上的点,如果BX/XC·CY/YA·AZ/ZB=1那么直线AX、BY、CZ共点。我们可将塞瓦定理推广到四面体中。定理1设E、F、G、H、M、N分别是四面体ABCD  相似文献   

5.
(数学问题333)设P是三角形ABC内的一点,直线AP、BP、CP与三边的交点分别为D、E、F,则三角形DEF叫做点P的塞瓦(Ceva)三角形.  相似文献   

6.
众所周知,关于三角形有如下共点线定理: 定理1三角形的三条高(所在的三条直线)必相交于同一点. 这个点称为三角形的垂心.定理1称为三角形的垂心定理. 本文拟应用向量方法,对定理1作多方位地类比推广,导出一个更具普遍性的、关于一般圆内接闭折线之k号心的共点线定理,供读者赏析.  相似文献   

7.
数学家卡诺曾经发现,三角形与二次曲线之间存在一种非常美妙的关系.即卡诺定理设△ABC的三条边AB、BCCA(或其延长线)与一条二次曲线分别相交于P与P’、Q与Q’、R与R’(如图1),则这个命题的证明可参看拙文[l],这里不赘述.利用这个定理,我们可以推导出一系列有趣的结论来.命题1设△ABC的三条边AB、BC、CA(或其延长线)与一条二次曲线分别相切于P、Q、R(如图2),则AQ、BR、CP三直线共点或互相平行.证曲线的切线是割线的特例,故由卡诺定理可知于是,由塞瓦定理的逆定理可知,AQ、BR、CP三直线共点或互相平行.…  相似文献   

8.
三角形重心定理:三角形三条中线相交于一点(称三角形的重心).这个点到每个顶点的距离等于到这顶点对边中点的距离的二倍.”我们分别运用三角形中位线性质、平行四边形的性质、相似形的性质,直线方程,点共线的条件,线共点的条件,线段定比分点及塞瓦(ceva)定理等有关知识来分类介绍它的十二种证法。思路一:先找出两条中线的交  相似文献   

9.
梅涅劳斯是古希腊著名数学家。他首先发现了一条直线截三角形三边或其延长线截得的线段的规律。这三角形称为梅氏三角形,这直线称为梅氏直线。梅氏直线与梅氏三角形三边或其延长线的交点称为梅氏分点(简称分点),这一定理称为梅氏定理。其内容是: 如图1、图2,直线DEF分别出△ABC三边或其延长线于D、E、F.则  相似文献   

10.
一、梅涅劳斯(Menelaus)定理简介 如果一直线顺次与三角形ABC的三边AB、BC、CA或其延长线交于M、N、K三点,则:AM/MB·BN/NC·CK/KA=1。  相似文献   

11.
证明线段比例式(或等积式),特别是证明圆中的线段比例式(或等积式)是全国各省市中考命题的重点和热点.因此,同学们学习因这一意时,要系统掌握这类命题的证题思路.证明这类命题的基本思路是:1.利用相似三角形.2.利月圆幕定理(相支弦定理、切割线定理和割线定理统称国幕定理).3利用平行线分线段成比例定理或其推论.其中用得最多的是相似三角形.下面举例说明,供参考.例1已知:如图1,四边形ABCH内接于00,过点D的切线HP//AB,DP与AC的延长线相交于点P.求证:CD‘一CB·CP.(1996年河北省中考题)分析欲证CD’…  相似文献   

12.
众所周知,三角形有重心、垂心、内心、外心、旁心及费尔马点等特殊点,这里我们将介绍三角形的一个特殊点集。 定理1 以△ABC三边为底向形外(或形内)作三个相似等腰三角形ABD、BCE、CAF,则AE、BF、CD三线共点。(如图) 证明 分三种情况考虑,并设向形外作的三个相似等腰三角形的底角为α。 (1)当α趋于0时,则三个相似等腰三角形的顶点D、E、F分别趋于AB、BC、CA的中点,所以,当α=0时,D、E、F是AB、BC、CA的中点,由重心定理可知AE、BF、CD三线共点。 (2)当α趋于π/2时,则AD与BD、BE与CE、AF与CF趋于平行,则CD与AD、BD;BF与AF、CF;AE与BE、CE也各趋于平行。所以当α=π/2时,CD∥AD∥BD,BF∥AF∥CF,AE∥BE∥CE,(D、E、F为无穷远点)所以此时CD⊥AB、BF⊥AC、AE⊥BC,由垂心定理可知CD、BF、AE三线共点。  相似文献   

13.
大家知道:四面体的四条中线交于一点;四条高线交于一点的充要条件是:每组对棱互相垂直,这里考虑四面体的各顶点与对面三角形内心的连线,这四线共点的充要条件。定理四面体各顶点与对面三角形内心的连线共点的充要条件是:三组对棱的乘积相等。  相似文献   

14.
一个有用的结论——拉密定理郁章富(泰安第二中学,271000)钱建强(莒县技工学校)裴广法(费县师范学校)三个不平行矢量的合矢量为零时,三个矢量必定共点共面,根据平行四边形法则(或三角形法则),三个矢量首尾顺次相连为自行封闭的三角形,如图1所示,根据...  相似文献   

15.
三角形的中线是平面几何中的一个重要概念,中线具有许多优美的性质,如重心定理、直角三角形斜边上的中线等都为大家所熟知.本文再向大家介绍中线的一个性质,该性质对发展学生的思维,拓宽解题思路,提高解题能力都能起到积极的作用.一、三角形中线的性质命题AD是△ABC的边BC上的中线,直线EF分别与AB、AC所在的直线相交于E、F(1)若EF∥BC,则AD平分EF,且AD、BF、CE三线共点;(2)若AD、BF、CE三线共点,则EF∥BC证图一是直线EF与AB、AC所在直线相交的三种情况,下面我们只给出图一(a)的证明.过BF与CE的交点…  相似文献   

16.
证明圆中的线段比例式或等积式,是平而几何中各种知识与圆的知识的有机结合,综合性强,能很好地考查学生综合应平知识的能力.历来是中老命题的重点和热点.证明这类命题的基本思路是:1.利用平行线分线段成比例定理或其推论.2.利用三角形内、外角争分线的性质定理.3.利用相似三角形的判定定理和性质定理.4.利用射影定理.5.利用圆幂定理(包括相交弦定理、切割线定理和割线定理).在证题过程中,要善于应用等城段代换、等比代换或等积代换.例1如图及,△ABC是O的内接三角形,PA是OO的切线,A是切点,过点P作BC的平行线交…  相似文献   

17.
正1、我国教材中的圆幂定理圆幂定理是初中几何圆部分很重要的定理,在我国教材上是以相交弦定理、割线定理和切割线定理三个定理的形式呈现的,它们合称为圆幂定理.从相交弦定理(图1)出发,将点P移到圆外就可以得到割线定理(图2),最后移动C点或D点,使他们重合便得到切割线定理(图3).三个定理的证明方法类似,都是寻找相似三角形.如图1中,可以连AC和BD得到△APC和△DPB相似,从而得到(AP)/PC=(DP)/(PB)和PA·PB  相似文献   

18.
三角形三边关系定理及其推论有多方面的应用,现举例分述如下:一、证明线段间的不等关系.常用于证明两线段的和(差)大于(小于)第三线段.一般是选择或构造三角形,使这个三角形以相关线段为边,然后用定理或推论证明.例1如图,已知D、E是△ABC内的两点.求证:AB+AC>BD+DE+EC.证明延长DE交AC于点G,延长ED交AB于点F.在△AFG中,AF+AG>FG.(1)在△FBD中,FB+FD>BD.(2)在△GCE中,GC十EG>EC.(3)将(1)、(2)、(3)式相加,得AF+AG+FB+FD…  相似文献   

19.
有一类关于比例中项和四线段成比例的几何题,其结论中的四条(或三条)线段,有的都在一条直线上;有的虽不在一条直线上,但化成比例式后,找不到两个三角形;有的虽能构成两个三角形,但不相似.为此,在证明时,必须通过等量代换,重新寻找有关的相似三角形或应用射影定理、圆幂定理等来达到解题目的.  相似文献   

20.
《几何》第二册53.2介绍了三角形三边关系定理:“三角形任何两边的和大于第三边”及其推论“三角形任何两边的差小于第三边”.下面举例说明此定理及其推论的应用.一、判断三点是否共线例工已知A、B、C三点,且AB=3,BC=5,AC。7,试判断这三点是否在同一条直线上?解‘.·AB+BC=3+5=8,AC=7,AB+BC>AC.故A、B、C三点不在同一条直线上.二、已知三条线段,判断它们能否构成三角形例2下列各组线段中,一定能构成三角形的是()(A)4,5,9.(B)7,10,2.(C)。+2,2。+3,3。+4。>0).(D)。‘,。‘+…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号