首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
众所周知,三角形的垂心有如下性质: 定理1 设△ABC的垂心为H,外接圆半径为R,则AH^2+BC^2=4R^2. 本文拟应用向量方法,将这个定理多方位地推广到一般圆内接多边形中.  相似文献   

2.
关于三角形垂心的探讨   总被引:1,自引:0,他引:1  
三角形的重心、外心、内心的性质 ,大家都比较熟悉 ,但对于三角形垂心的性质未见介绍过 ,本人在教学中偶有发现 ,在此介绍并证明如下 ,供同行参考并指正。命题 三角形的重心到各顶点的距离与对应顶点内角余弦值的绝对值的比都相等 ,都等于三角形外接圆的直径。设△ABC的垂心为H ,外接圆的半径为R ,设A、图 1B、C为△ABC的三个内角 ,则HA|cosA|=HB|cosB|=HC|cosC|=2R。下面分三种情况证明 :( 1 )设△ABC为锐角三角形 (如图 1 ) ,作直径BD ,连结AD、DC ,则∠BDC =∠BAC①在Rt△BDC中 ,cos∠BDC =DCBD=DC2R ②又DA⊥AB(…  相似文献   

3.
1863年,普鲁海(Prouhet)将三角形的九点圆(也称欧拉圆或费尔巴哈圆[1])定理,类比推广到垂心四面体中,得到了如下的十二点球定理:[2]定理0在垂心四面体中,以外心与垂心连线的第二个三等分点为球心,外接球面半径的三分之一为半径的球面,必通过十二个特殊点,即:四个顶点与垂心连线的第二个三等分点,四个侧面的重心,以及四条高的垂足.这个定理所说的球面,通常称为垂心四面体的普鲁海球面.最近,曾建军国老师在[3]中指出:若垂心四面体A1A2A3A4的外心为O,垂心为H,则点H满足OH=12∑i=41OAi.据此,我们可以将圆内接四边形与垂心四面体进行类比,导出一个有趣的十二点圆定理.现介绍如下,供读者赏析.本文约定:在任意四边形A1A2A3A4中,除任一顶点Aj外,以其余三顶点为顶点的三角形,称为四边形A1A2A3A4的子三角形,记作△j(j=1,2,3,4).定义设四边形A1A2A3A4内接于⊙(O,R),若点E满足OE=21∑i=41OAi(1)则点E称为四边形A1A2A3A4的欧拉圆心[4];以线段OE的第二个三等分点P为圆心、3R为半径的圆,称为四边形A1A2A3A4的普鲁海圆,记作⊙P,3R.其中,...  相似文献   

4.
我们知道:三角形的内心,外心,重心,垂心等都有其独特的性质,这里,我们将介绍一个三角形外心与垂心相互联系的等式。即定理:三角形任一顶点至垂心的距离,等于外心至对边距离的二倍。已知H是△ABC的垂心,O是外心,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F, 求证:AH=2OD,BH=2OE,CH=2OF。证明:分两种情况讨论  相似文献   

5.
1765年,瑞士数学家欧拉(Euler)发现了如下定理:定理1(欧拉定理) 设△ABC的外接回、内切圆的半径分别为R、r,其外心到内心的距离为d,则d~2=R~2-2Rr这个优美对称的结果,激发我们去寻求三角形中其它特殊点如重心、垂心、内心、外心之间的距离的计算公式.对此,我们有如下的定理2(心距定理) 设△ABC的三边为a、b、c,外接圆、内切圆半径分别为R、r,其外心、内心、垂心到重心的距离分别为e、f、g,外心到垂心的距离为k,则  相似文献   

6.
美国数学家R.A.约翰逊在其名著[1]中,介绍了三角形垂心的如下有趣性质:定理0三角形的高上,从垂心到边这一段的长,等于它的延长线从边到外接圆的长.如右图,设?A1A2A3的垂心为H,它的高A1D1延长后交外接圆于M1,则HD1=D1M1.本文拟应用向量方法,将这个命题类比推广到一般的球内接多面体中.为了叙述简便和节省篇幅起见,本文沿用文[2]中的有关概念和符号,而不复述它们的意义.对定理0运用类比,我们得到定理1设多面体V内接于球面S(O,R),其顶点全集为{A1,A2,,An},伪垂心为H,一级顶点子集V j的2号心为E j(1≤j≤n),线段A jH的延长线交球面S(…  相似文献   

7.
笔者最近发现,三角形有一个性质,介绍如下,请伺行指正:定理锐角三角形的垂心到三顶点的距离之和等于这个三角形外接圆与内切圆直径之和;钝角三角形垂心到两锐角顶点距离之和减去垂心到钝角顶点距离等于该三角形外接圆与内切圆直径之和.证明设三角形的三边为a、b、c,垂心为H,外接圆与内切圆半径分别为R和r.如图建立直角坐标系,则C(0,0)、A(b,0)、B(αcosCαsinC),无论是锐角还是钝角三角形,直线AH、BH的方程分别为由此得垂心坐标为应用距离公式,余弦定理及正弦定理得:于是,当△ABC为锐角三角形时|HA|注意到当△…  相似文献   

8.
1 基础知识三角形三边上的高的交点称为三角形的垂心 .三角形垂心有下列有趣的性质 :设△ABC的三条高为AD、BE、CF ,其中D、E、F为垂足 ,垂心为H .性质 1 垂心H关于三边的对称点 ,均在△ABC的外接圆上 .性质 2 △ABC中 ,有六组四点共圆 ,有三组 (每组四个 )相似的直角三角形 ,且AH·HD =BH·HE =CH·HF .性质 3 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心 (并称这样的四点为一垂心组 ) .性质 4 △ABC ,△ABH ,△BCH ,△ACH的外接圆是等圆 .性质 5 在非直角三角形中 ,过…  相似文献   

9.
读贵刊1987.1期《垂心的垂足三角形》一文,颇受启发。本文意欲探讨与垂心有关的另一种三角形——垂心的“垂边三角形”的一些性质,为与《垂心的垂足三角形》相呼应,不妨仍以“边长”、“周长”、“面积”的顺序行文。 (一) 垂心的“垂边三角形”的定义: 如图,以三角形的垂心及三角形两顶点为三顶点的三角形叫做垂心的垂边三角形。图中△HBC、  相似文献   

10.
三角形有外心、内心、垂心、重心,它们都有许多重要的性质,在教学与研究中,笔者发现了它的新的而且非常有趣的性质,现介绍如下: 性质1:三角形外心关于各边的对称点所构成的三角形必与原三角形全等。 证明:设△ABC的外心为O,O关于边BC、CA、AB的对称点分别为O_1,O_2,O_3,记外接圆半径为R_o (1)当△ABC为锐角三角形时,O点在△ABC的内部,如图1 ∠O_2AO_3=2(α β)=2A O_2A=O_3A=OA=R 由余弦定理知: O_2O_3~2=O_2A~2 O_3A~2-2O_2A·O_3A·COS2A =2R~2-2R~2·COS2A =4R~28sin~2A  相似文献   

11.
众所周知 ,三角形的三条高所在的直线必相交于同一点 ,这个点称为三角形的垂心 .在△ABC所在的平面内 ,以它的外心O为原点建立直角坐标系xOy ,设△ABC三顶点A、B、C的坐标分别为 (x1,y1)、(x2 ,y2 )、(x3,y3) ,其垂心H的坐标为 (xH,yH) ,那么容易推得xH = 3i=1xi,yH = 3i=1yi.这就是三角形的垂心的坐标公式 .据此 ,运用类比方法 ,我们可以建立圆内接四边形的“垂心”概念 ,并探讨其性质 .定义 设四边形ABCD内接于⊙O ,以圆心O为原点建立直角坐标系xOy ,设顶点A、B、C、D的坐标分别为 (x1,y1)、(x2 ,y2 )、(x3,y3)、(x4 ,y4 ) ,…  相似文献   

12.
以三角形三条高的垂足为顶点的三角形,称为垂心的垂足三角形。现将垂心的垂足三角形和原三角形之间的某些关系介绍如下: 一、垂心的垂足三角形的角度  相似文献   

13.
(本讲适合初中)任意三角形的外心O、重心G、垂心H三点共线,并且GOHG=12.这就是三角形的欧拉线的定义及性质.欧拉线是一条直线.掌握欧拉线性质须注意两点:(1)外心、重心、垂心三点共线;(2)定比1∶2.欧拉线的常用表示法有三种:(1)外心、垂心法,即欧拉线OH;(2)外心、重心法,即欧拉  相似文献   

14.
垂心是三角形中的重要一点,鉴于知识的条理化、系列化,本文将归纳涉及三角形垂心的诸多性质及其应用。先不加证明地给出有关的性质。性质1 三角形的三条高线相交于一点(这就是三角形的垂心定理)。性质2 H是锐角△ABC的垂心,AH交BC于D,交△ABC外接圆于L,有  相似文献   

15.
三角形的“外心”、“垂心”、“重心”共线,该直线称为欧拉线。欧拉线反映了三心之间的一种内在联系。三角形的“外心”、“垂心”、“重心”之间还有许多有趣的性质。 一、若△ABC的外心为O、重心为G、垂心为H,容易证明这三心之间的距离具有度量关系GH=2OG 二、若锐角△ABC的三边中点分别为D、E、F,△DEF的高线足分别为D′、E′、F′,容易证明△ABC的外心O是△DEF的垂心,又是△D′E′F′的内心;若△ABC是钝角三角形,则△ABC的外心O是△DEF的垂心,又是△D′E′F′的一个傍心。  相似文献   

16.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?…  相似文献   

17.
正1引言与主要结果文献[1]介绍了三角形中一个优美的六点共圆定理,即定理0(Hagge定理)从三角形的顶点到对边引共点的线段,以它们为直径作圆;过三角形的垂心作这些线的垂线,与相应的圆相交,所得的六个交点共圆,且圆心就是共点线的公共点.本文将这个优美的六点共圆定理推广至三维空间,得到了一个关于垂心四面体的四圆共球定理:定理1设垂心四面体A1A2A3A4的垂心H在四面体内部,从顶点Ai到所对面引线段AiBi(i=1,2,3,4),四条线段交于一点P;以线段AiBi为直径作球面Si,过H作平面与线段AiBi垂直,且与球面Si相交于圆Oi(i=1,2,3,4),则所得  相似文献   

18.
众所周知,三角形的外心O、重心G、垂心H三点共线,且2OG=GH,此线叫做欧拉线.现在我们用三角形的三边来表示这三点间的距离.  相似文献   

19.
三角形的外心、内心、重心、垂心和旁心不妨称它们为巧合点 ,三角形的巧合点各自具有不同的有趣性质 ,这里仅介绍关联这些巧合点中的某些点或全体点的一些性质及应用的例子 .性质 1 三角形的任一顶点到垂心的距离等于外心到对边的距离的两倍 .性质 2 三角形的内心和任一顶点的连线延长与三角形的外接圆相交 ,这个交点与外心的连线是这一顶点所对的边的中垂线 .性质 3 三角形的内心和任一顶点的连线 ,平分外心、该顶点和垂心依次连结所成的角 .性质 4 三角形的外心、垂心、重心三点共线 (欧拉线 ) ,且重心与垂心的距离是外心与重心距离的…  相似文献   

20.
三角形的“五心”,即重心、垂心、外心、内心和旁心,它们的性质是: (1)三角形的重心(三条中线的交点)到各顶点的距离是它到对边中点距离的两倍. (2)三角形的垂心与三角形的两个顶点所构成的新三角形的垂心(三条高所在的直线的交点)是原三角形的另一顶点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号