首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,三角形的面积可用它的顶点坐标的行列式表示:设△ABC三个顶点坐标为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),则三角形面积为: 由于三角形的边长也可以用它的顶点坐标不表示,BC=a,AC=b,AB=c,有  相似文献   

2.
现行高中代数课本第二册行列式一章中有一道习题如下: 已知三角形三个顶点A(x_1,y_1),B(x_2,y_2)。C(x_3,y_3),则三角形的面积 S=1/2(?)的绝对值。(P186第14题) 从该题的证明过程(这里从略)中可知:当A、B、C按逆时针方向排列时,取正号;当A、B、C按顺针方向排列时;取负号。由此题可立即推出;平面上三点(x_1,y_1),(x_2,y_2)(x_3,y_3)共线的充要条件是(?)=0。(P189第27题) 应用这两个公式来解有关三角形面积与三点共线的平面几何问题,可以使解题思路清晰,解答过程简捷。现举例说明如下: 例1 在四边形ABCD内,三角形ABD、BCD。ABC的面积之比是3:4:1,M、N分别在AC、CD上,满足AM:AC=CN:CD,且B、M、N三点共线,试证M、N分别为AC、CD之中点。(83年全国数学竞赛试题二,第三题)。  相似文献   

3.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

4.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

5.
定理 设△ABC顶点为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),如y_1≥y_2,y_3,则△ABC方程为 |2f_1-2△ |f_2|| |f_2|=2△。 (1)其中△表示△ABC的面积,而  相似文献   

6.
正我们知道,抛物线y=ax~2+bx+c是轴对称图形,它的对称轴为x=b/(2a)。抛物线的轴对称性是二次函数的一个重要特征,即若抛物线上有两个对称点的坐标为(x_1,y_1)、(x_2,y_2)则一定有y_1=y_2,且其对称轴为x=(x_1+x_2)/2。当抛物线开口方向向上,抛物线上的点距离对称轴越远,所对应的点的纵坐  相似文献   

7.
第一试 一、选择题 1.对x_1>x_2>0,1>a>0,记 y_1=x_1/(1 a) ax_2/(1 a),y_2=ax_1/(1-a) x_2/(1 a),则x_1x_2与y_1y_2的关系为( )。  相似文献   

8.
“面积法”解题的基本思想是:用不同的方法表示同一图形的面积,从而得到一个等式——“面积方程”,再对该方程进行整理和变换,以获得所需要的结果.为了能够列出各种图形的面积方程,就应熟悉面积的计算方法,而平面几何中的许多图形,都可以分割为若干个三角形.计算三角形面积最常用、最基本的公式有:①S△=12aha=21bhb=21chc;②S△=12ab sinC=12bc sinA=21ac sinB;③S△="s(s-a)(s-b)(s-c).(海伦公式)其他形式的面积公式均可由以上三个公式推导而来,公式中字母约定:a、b、c表示△ABC的三边,ha、hb、hc表示三边所对应的高,s表示三角形的半…  相似文献   

9.
三点共线定理是:平面上三点(x_1,y_1)(x_2,y_2),(x_3,y_3)共线的充要条件是x_1 y_1 1x_2 y_2 1=0.x_3 y_3 1 关于这个定理的应用大致有两类:一是判断三点共线;二是根据三点共线证明或求解某些特殊问题。本文列举数例说明三点共线定理的后一种应用,供教学参考。  相似文献   

10.
<正>平面直角坐标系中,三边都不在坐标轴上(或不与坐标轴平行)的三角形面积问题,成为了近年中考命题的热点之一.解决此类问题有一定的难度,常用的方法有:割补法,公式法,平行线法等.本文介绍一种全新解法,供大家参考.定理若A(x_1,y_1),B(x_2,y_2)(x_1≠x_2)为直线y=kx+b(k≠0)上的两点,P(m,n)为直线y=kx+b外一点.则有  相似文献   

11.
待定系数法是中学数学中的一种重要方法。本文就平面解析几何的特点,归纳总结出应用待定系数法时确定系数的几种方法。1.直接利用条件确定待定系数例抛物线 y~2=2px 的内接正三角形的一个顶点在原点,三边上的高都通过抛物线的焦点,求此三角形外接圆的方程。解如图1,设 A 点的坐标为(x_1,y_1),则 y_1=(?)因此 A 点的坐标为(x_1,(?)),由对称性得 B 点的坐标为  相似文献   

12.
二元二次多项式 F(x,y)=Ax~2 2Bxy cy~2十2Dx 2Ey F 式中,A、B、C、D、E、F∈R 用矩阵表示,即为 定义1 称为二元二次多项式的配极形式。 配极形式F~*(X_0,y_0;x,y)有如下一些性质: (1)对称性 F~*(x_0,y_0;x,y)=F~*(x,y;x_0,y_0) (2)还原性 F~*(x_0,y_0;x_0,y_0)=F(x_0,y_0) 利用矩阵的运算性质,不难证明性质(1)和性质(2)。 (3)设a、b∈R,且a b=1,则  相似文献   

13.
在高二《解析几何》课本总复习题中有这样一道习题:“已知椭圆x~2/(16)+y~2/9=1,求椭圆内接正方形的面积.”(P 192) 对于这一道题,通常解法如下: 设椭圆内接正方形一个顶点坐标为(x_1,y_1),则另外三个顶点坐标为(-x_1,y_1)(-x_1,-y_1),(x_1,-y_1),再由正方形的特征可得|x_1|=|y_1|,代入椭圆方程立得:x_1~2/(16)+x_1~2/9=1,即得:x_1~2=(144)/(25) S正方形=4x_1~2=(576)/(25)  相似文献   

14.
每期一题     
题:如图,椭圆 x~2/a~2+y~2/b~2=1的切线与两坐标轴分别交于A、B两点,求三角形OAB的最小面积。 (下面一些解法是解析几何极值问题的常用解题方法。) 解法一利用二次函数极值知识。设切点为(x_0,y_0)(x_0>C,y_0>0),则切线AB的方程为  相似文献   

15.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

16.
一、平行问题这类问题主要考查向量平行的充要条件:若向量α=(x_1,y_1),b=(x_2,y_2),且b≠0,则a//b(?) x_1y_2-x_2y_1=0.  相似文献   

17.
在计算三角形的面积或利用三角形的面积来计算其它图形的面积时,我们常常运用下列公式:S=(1/2)a·h_a;S=(1/2)absinC;S=(s(s-a)(s-b)(s-c))~(1/2);S=(abc)/4R.其中,a、b、c 是三角形的边,h_a 是边 a 上的高,s=(1/2)(a+b+c),R 是三角形外接圆的半径。然而,在平面几何的证题中,如遇到有关线段(或  相似文献   

18.
假设在n维空间的一个区域D内(包括边界,D可以是整个空间或空间的一部分)充满了连续介质。光在此空间中传播,其传播速度为: V=V(x,y_1,y_2,……,y_(n-1)) (3) 写得简洁一些: V=V(x,y_i),(i=1,2,……n-1) 现在我们考虑,光在D内,从点A(x_1,y_(i1))传到点B(x_2,y_(i2))的路迹方程。 由费马原理,光线从点A(x_1,y_(i1))传到点B(x_2,y_(i2))的道路yi=yi(x),使传播时间  相似文献   

19.
在教材《微积分》的“定积分在几何上的应用”一节内容中,讨论直角坐标系下平面图形的面积时指出:设y_1=f(x),y_2=g(x)为闭区间[a,b]上的连续函数,且f(x)>g(x)。要计算由曲线y_1=f(x),y_2=g(x)及直线x=a,x=b所围成的平面图形的面积S(见图1),则为  相似文献   

20.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号