首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

2.
有理函数是指两个多项式的商所表示的函数 .下面以两个二次多项式的商所表示的函数f(x) =a2 x2 +a1x +a0b2 x2 +b1x +b0,x∈ [a ,b](1)为例 ,给出其值域求解的一个通用方法 .1 值域求解在 (1)式中 ,不妨限定b2 ≠ 0 (这是因为若b2 =0 ,则问题比较简单 ) ,对式 (1)作适当的变换 ,可转换为y =a2 x2 +a1x+a0b2 x2 +b1x+b0=a2b2 +a1b2 -a2 b1b2x+ a0 b2 -a2 b0b2b2 x2 +b1x+b0(2 )令m =a1b2 -a2 b1b2,n =a0 b2 -a2 b0b2,则式 (2 )变为y - a2b2 =mx+nb2 x2 +b1x+b0. (3)令    Y =y- a2b2,则式 (3)变为     Y =mx +nb2 x2 +b1x +b0. (4)…  相似文献   

3.
一元二次方程是初中数学的重要内容,也是中考的热点.下面以2013年中考题为例,说明一元二次方程中常用的数学思想. 一、整体思想 例1 (2013年黔西南卷)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是____. 解析:∵x=1是一元二次方程x2+ax+b=0的一个根, ∴12+a+b=0,∴a+b=-1, ∴.a2+b2+2ab=(a+b)2=(-1)2=1. 温馨小提示:本题主要考查一元二次方程解的概念,把根直接代入方程,即可求得a+b的值,然后整体代入求出代数式的值.  相似文献   

4.
一、选择题1 .已知实数a、b满足a -1a =1b -b =3 ,且a b>0 ,则 ab3-ba3的值是 (   ) .A .2 1 5 B .2 1 1 3 C .3 3 5 D .3 3 1 32 .已知实数a是方程x2 -mx m 5 =0和x2 -(8m 1 )x 1 5m 7=0的公共根 ,则ma的值等于 (   ) .A .1 8  B .9  C .2  D .-93 .设a、b、c都是实数 ,且a≠ 0 ,a b =-2c,则方程ax2 bx c=0根的情况是 (   ) .A .只有一个正根    B .有两个正根C .至少有一个正根   D .无正根4.设菱形的周长为 2 0 ,两条对角线的长是方程x2 -(2m -1 )x 4m -4=0的两个根 ,则m的值为 (   ) .A .-72  …  相似文献   

5.
一元二次方程是中学数学的重要内容 ,因此 ,有关一元二次方程的问题一直受到各级各类竞赛的青睐 .本文通过一些不同形式的例题 ,介绍解答一元二次方程公共根问题的基本策略 .1 消去二次项例 1 若两个方程 x2 +ax+b=0和 x2+bx+a=0只有一个公共根 ,则 (  ) .(A) a=b     (B) a+b=0(C) a+b=1(D) a+b=- 1(2 0 0 2年江苏省初中数学竞赛题 )解 设两方程的公共根为 x0 ,则x20 +ax0 +b=0 ,x20 +bx0 +a=0 .121- 2 ,得 (a- b) (x0 - 1) =0 .∵两方程只有一个公共根 ,∴ a≠ b.从而x0 =1为两方程的公共根 ,代入 1,得 1+a+b= 0 ,即 a+b=- 1,选…  相似文献   

6.
例1 已知a,b,k均为实数,且a,b是方程x2-2kx 1/2k2-2=0的两个根,又a,b,k满足a2-2ak 2ab-5=0,求k的值. 解 a,b是方程x2-2kx 1/2k2-2=0的两个根,由韦达定理得 ab=1/2k2-2.  相似文献   

7.
一、理解根与系数关系的本质特征一元二次方程根与系数的关系 ,教材从两个方面进行了研究。一方面从一元二次方程的求根公式出发 ,揭示出两根和及积与系数的关系 ,即 :ax2 bx c=0 (a≠ 0 )的两个根是 x1、x2 ,则 x1 x2 =- ba,x1· x2 =ca。运用这个关系式可不解方程而从一元二次方程的一般形式求出它的两根之和与两根之积 ;另一方面可由两个数来得到一个以这两个数为根的一元二次方程。1.由已知一元二次方程求它的两根和与两根积。例 1.已知实数 a、b满足 a2 =2 - 2 a,b2 =2 -2 b,且 a≠ b,试确定 a b与 ab的值。分析 :整理 ,得 a2 2 a- 2…  相似文献   

8.
最值问题是近几年高考中的一大热点内容,这类问题解法灵活多变,对数学思想方法的要求较高.本文介绍构造法求解这类问题的一些类型题,希望对读者有所启发.一、构造方程模型【例1】已知实数a、b满足a2 b2 ab=1,求t=ab-a2-b2的最值.解:构造一个关于x的一元二次方程x2-(a b)x (a b)2-1=0.显然a、b是这个方程的两个实根.从而△=[-(a b)]2-4[(a b)2-1]≥0,即4-3(a b)2≥0,∴0≤(a b)2≤34.由t=ab-a2-b2=-2ab-a2-b2 3ab=-(a b)2 3[(a b)2-1]=2(a b)2-3.综上,当(a b)2=0时,tmin=-3;当(a b)2=43时,tmax=-31.评析:构造满足题设条件的二次方程是本题求…  相似文献   

9.
求三角函数最值问题中的参数值问题,是三角中的一个重要内容.而在教材或一些读物中其习题甚少,笔者就以自己积累的资料加以整理,供学习参考.一、应用三角函数值域:|sinx|≤1,|cosx|≤1.例1已知x∈[0,π4],函数f(x)=2asin2x-23asinxcosx a b(a<0)的最大值为1,最小值为-5,求a、b的值.解:f(x)=a(1-cos2x)-3asin2x a b=-a(3sin2x cos2x) 2a b=-2asin(2x 6π) 2a b.因为x∈[0,4π]2x 6π∈[π6,23π],所以sin(2x π6)∈[12,1]又因为a<0,所以-2a 2a b=1,-a 2a b=-5,a=-6,b=1.故a=-6,b=1.注:解此类题,用此法的关键是问题可化归为Asin(ωx φ)或Aco…  相似文献   

10.
引理1:椭圆b2x2 a2y2=a2b2(a>b>0)上A、B两点的切线交于P(x0,y0),则AB的直线方程为b2x0x a2y0y=a2b2证明:设A(x1,y1),B(x2,y2),则过A,B的切线方程分别为b2x1y a2y1y=a2b2,b2x2y a2y1y=a2b2,因P点是两切线的公共点,故(x0,y0)同时满足上述两方程,应有b2x0x1 a2y0y1=a2b2,b2x0x2 a  相似文献   

11.
关于x的一元二次方程ax~2 bx c=0(a≠0),如果a b c=0,则x=1是原方程的一个根;如果a-b c=0,则x=-1是原方程的一个根。反之亦然。这个性质在解题中有着独到的作用,兹举数例供参考。 例1 已知二次方程(ab-2b)x~2 2(b-a)x 2a-ab=0有两个相等的实数根,那么1/a 1/b=__。 解 因(ab-2b) 2(b-a) (2a-ab)  相似文献   

12.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

13.
应用数学公式解题时,不仅要学会直接应用,还应学会根据问题的需要,将公式加以变形而活用.下面通过例题来学习这种方法.一、完全平方公式的活用完全平方公式经过适当移项后得a2 b2=(a b)2-2ab.例1已知a、b为方程x2-3x 1=0的两根,求a2 b2的值.解:由韦达定理得a b=3,ab=1,所以a2 b2=(a b)2-2ab=9-2=7.例2分解因式x4 1.解:x4 1=(x2)2 1=(x2 1)2-2·x2·1=(x2 1)2-(2姨x)2=(x2 2姨x 1)(x2-2姨x 1).二、完全立方公式的变形完全立方公式经过移项后得a3 b3=(a b)3-3ab(a b).例3已知x2-5x 1=0,求x3 12的值.解:由韦达定理得x 1x=5,所以x3 1x3=(x 1x)3-…  相似文献   

14.
一、要注意分母的值不能为零例1(1997年山西省中考题)当x=时,分式(x-|3x)|(-x1+1)的值为零·解:由|x|-1=0,得x=1或x=-1;当x=-1时,分母(x-3)(x+1)=0,所以x=1时,上述分式的值为零·二、要注意不要盲目通分例2(1997年西宁市中考题)当a=3,b=2时,求代数式a+ba2+2ab+b2-ba22--abb2的值解:待求式=a+b(a+b)2+(a+b(ba)(-ab)-b)=a1+b+a+bb=a1++bb=33+2=3(2-3)·三、要注意运用换元技巧例3(1997年云南省中考题)1x2+3x+2+1x2+5x+6+x2+41x+3·解:因为原式=(x+1)1(x+2)+1(x+2)(x+3)+(x+3)1(x+1),所以设x+1=a,x+2=b,x+3=c,则原式=a1b+b1c+c1a=a+abbc+c=(x+1…  相似文献   

15.
例 1.已知 a2 b2 =6 ab且 a>b>0 ,则 a ba- b=。 (2 0 0 1年北京市中学生数学竞赛初二决赛题 )解 :设 a=x y,b=x- y,则将其代入 a2 b2 =6 ab中 ,得 (x y) 2 (x- y) 2 =6 (x y) (x- y)展开括号 ,化简整理得 4 x2 =8y2。而 a>b>0 ,∴ x>y>0 ,∴ x2y2 =2 ,∴ xy=2 ,另 a b=2 x,a- b=2 y,因此 a ba- b=2 x2 y=xy=2。二、求最值范围例 2 .已知实数 a、b满足 a2 ab b2 =1,且 t=ab- a2 - b2 ,那么 t的取值范围是。 (2 0 0 1年 TI杯全国初中数学竞赛 A卷试题 )解 :设 a=x y,b==x- y,代入已知式得(x y) 2 (x y) (x- y) (x- y…  相似文献   

16.
<正>1错解呈现例1抛物线x2=2py(p>0)的焦点F恰好是双曲线y2/a2-x2/b2=1(a>0,b>0)的一个焦点,且两条曲线交点的连线过点F,求该双曲线的离心率.解答由[{x2=2py,y2/a2-x2/b2消x得b2y2-2a2py-a2b2=1=0.设A(x1,y1),B(x2,y2)是抛物线与双曲线的两个  相似文献   

17.
本文给出一个关于函数y=x (a~2/x)(x>0,a>0)的单调性定理,然后给出它的应用。 定理 函数y=x a~2/x(a是正常数),在(0,a]上单调减少,在[a, ∞)上单调增加。 定理的证明比较简单,但定理的应用非常广泛,用它可以解决一些用不等式a b≥2((1/2)ab)不能解决的问题。 例1 已知a、b∈R~ ,且a b=S(定值),求函数y=(a 1/a)(b 1/b)的最小值。  相似文献   

18.
学习了相反数和倒数的有关知识后,不难发现关于相反数和倒数具有如下性质: 1.如果a、b互为相反数,那么a+b=0; 2.如果a、b互为倒数,那么ab=1, 解答某些与相反数或倒数有关的问题时,应注意灵活巧用这两个性质. 例1 若a与b互为倒数,x与y互为相反数,则-2ab+2x+2y的值是___.(1998年成都市初一数学竞赛试题) 解:由a与b互为倒数,x与y互为相反数,得 ab=1,x+y=0. 原式=-2ab+2(x+y) =-2·1+2·0=-2. 例2 已知a与-b互为相反数,那么  相似文献   

19.
例 1 解方程 a - x + x - b =a - b.解 :设 m =a - x ,n =x - b,则 m + n =a - b,又因为 m2 + n2 =a - b,即 ( m + n) 2 - 2 mn =a - b,∴ m n =0 .由韦达定理知 ,m ,n为方程 u2 - a - bu =0的两个根 ,∴ m =0 ,n =a - b,或 m =a - b,n=0 .由此可解得 x1=a,x2 =b.经检验 ,它们都是原方程的根 .例 2 解方程 x + 12 x - 1- 2 x - 1x + 1=22 .解 :设 m =x + 12 x - 1,n =- 2 x - 1x + 1,则 m + n =22 ,m n =- 1,由韦达定理知 ,m,n是方程 u2 - 22 u - 1=0的两个根 ,∴ m =2 ,n =- 22 或 m =- 22 ,n =2 .由此可解得 x =1,经检验 ,x =1是原方程…  相似文献   

20.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号