首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2001年全国高考试题(广东、河南卷)第21题: 已知椭圆等x2/2+y2=1的右准线l与x轴交于一点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴,求证直线AC经过线段EF的中点.  相似文献   

2.
题目过双曲线2x2-y2-2=0的右焦点F作直线l交双曲线于A、B两点。若|AB|=4,则这样的直线有几条? 分析:把双曲线化为标准方程x2-y2/2=1,这里a2=1,b2=2,点F(3~(1/2),0)。若l⊥x轴,|AB|=2b2/a=4.  相似文献   

3.
<正>1考题呈现题1(2018年高考全国数学卷Ι理19题)设椭圆C:x2/2+y2/2+y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线  相似文献   

4.
题目已知椭圆C:(x2)/(a2) (y2)/(b2)=1(a>b>0)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex a与x轴、y轴分别交于点A,B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设(→AM)=λ(→AB).  相似文献   

5.
2005年湖南高考理科19题(文科21题第一问题同): 已知椭圆C:x2/a2 y2/b2=1(a>b>0)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设(→AM)=λ(→AB).  相似文献   

6.
直线恒过定点问题涉及解析几何的所有知识 ,综合性强 ,方法灵活 ,运算复杂 ,对能力要求高 ,因此 ,时常在高考试题和竞赛试题中出现 .笔者在教学过程中总结了以下四种策略 .1 特殊引路找定点对于有些直线恒过定点问题 ,可以先考虑动直线l的特殊情况 ,找出定点P的位置 ,然后证明该定点P在动直线l上 .例 1 已知椭圆 x22 +y2 =1的右准线为l,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线l上 ,且BC∥x轴 ,求证 :直线AC经过定点 .(2 0 0 1年广东高考试题改编 )证明 :如图 1 ,设l⊥x轴 ,垂足为E ,易求得F(1 ,0 ) ,E(2 ,0 ) .当AB…  相似文献   

7.
文 [1]~ [4 ]给出了与圆锥曲线有关的一些不等式 ,本文再给出与双曲线有关的一个不等式 ,然后介绍它的应用 .定理 设F是双曲线的一个焦点 ,l是过焦点F且垂直实轴的直线 ,A1、A2 是双曲线与实轴的两个交点 ,P∈l,∠A1PA2 =α ,e是双曲线的离心率 ,则α为锐角 ,且sinα≤ 1e.当且仅当点P到双曲线实轴的距离是双曲线虚半轴长时取等号 .证明 不妨设双曲线方程为 x2a2 - y2b2 =1,F(c,0 )为右焦点 ,P位于x轴上方 ,如图 1所示 .易知过点F垂直于x轴的直线l的方程为x =c,从而可设点P的坐标为 (c ,y) (y>0 ) .又知A1(-a ,0 ) ,A2 (a ,0 ) ,由…  相似文献   

8.
考题1 已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程为y=4/3x,右焦点F(5,0),双曲线的实轴为A1A2,P为双曲线上一点(不同于A1,A2),直线A1P、A2P分别与直线l:x=9/5交于M、N两点.  相似文献   

9.
gxueshengshidai一.选择题1.过定点P(0,2)作直线l,使l与曲线y2=4(x-1)有且仅有1个公共点,这样的直线l共有()A.1条B.2条C.3条D.4条2.设θ是三角形的一个内角,且sinθ cosθ=15,则曲线x2sinθ y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线3.已知F1、F2是椭圆1x62 y92=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1| |BF1|等于()A.11B.10C.9D.164.AB为过椭圆x2a2 by22=1中心的弦,F(c,0)为椭圆的右焦点,则△AFB的面积最大值是()A.b2B.ab C.ac D.bc5.椭圆x…  相似文献   

10.
【题】 :过双曲线x2 - y22 =1的右焦点作直线l交双曲线于A、B两点 ,若|AB|=4 ,则这样的直线共有 (   ) .A .1条    B .2条C .3条  D .4条正确答案是C .对该题进一步的探讨分析发现 ,此双曲线的实半轴a =1,虚半轴b =2 ,过焦点与x轴垂直的弦长为2b2a =4 ,|AB|=2b2a =4 >2a =2 .试问 :|AB|无论多长答案是否都是C呢 ?请看 :设双曲线 x2a2 - y2b2 =1(c =a2 b2 )的右焦点为F ,过F作直线l交双曲线于A、B两点 ,|AB|=d ,试根据d的不同取值讨论l的存在性 .预备知识 :(1)两顶点间的距离是双曲线两支上的两点间距离的最小值 ;(2 )过双…  相似文献   

11.
1 题目呈现 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为1/2 ,F1,F2 为椭圆C的左、右焦点,过F1且斜率不为零的直线l1交椭圆于P,Q两点,△F2PQ的周长为8. (1)求椭圆C 的方程; (2)设A 为椭圆的右顶点,直线AP ,AQ 分别交直线l2:x=-4于M ,N 两点,试判断以MN ...  相似文献   

12.
题目 双曲线的中心为原点,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.  相似文献   

13.
题:设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点O.证明:如图1,记x轴与抛物线准线l的交点为E,过A作AD⊥l,D是垂足,则  相似文献   

14.
对典型习题要构建自己的习题网络培养自己的思维模式,在建网过程中可深悟知识、练铸能力.一、一个常见问题的两种解法的比较问题:过抛物线y2=2px(p>0)的焦点F作一直线l交抛物线于A(x1,y1)、B(x2,y2)两点,则A、B的坐标之间有什么关系?解1:设直线l为y=k(x-2p)或x=2p.有x1 x2=p 2kp2或p;x1·x2=p42;y1 y2=2kp或0;y1y2=-p2解2:设直线l为x=ny 2p,x1 x2=2pn2 p;x1·x2=p42;y1 y2=2pn;y1·y2=-p2;说明:(1)解法1要讨论两种情况,这里选择解2的直线方程形式“x=ny 2p”可以表示过点F的除x轴以外的直线,避免对直线方程形式的讨论,一般有关过x轴上的…  相似文献   

15.
<正>一、问题呈现试题已知椭圆M:■的右焦点为F(2,0),长轴长与短轴长的比值为■.(1)求椭圆M的方程;(2)过点F的直线l与椭圆M交于A,B两点,BC⊥x轴于点C,AD⊥x轴于点D,直线BD交直线x=4于点E,求△ECD与△EAB的面积之比.这是北京市西城区2022年1月高三年级的一道期末考试题.其中第(1)问为基础题,  相似文献   

16.
<正>2题目设椭圆C:x2/2+y22/2+y2=1的右焦点为2F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.该题是去年高考数学全国卷Ⅰ的理科试  相似文献   

17.
2010年高考四川卷第20题:已知定点A(-1,0),F(2,0),定直线l:x=1/2,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B,C两点,直线AB、AC分别交直线l于点M,N.  相似文献   

18.
2001年广东省的一道高考题: 已知椭圆22/21xy =的右准线l与x轴相交于A、B两点,点C在右准线上,且//BC x轴,求证直线AC经过线段EF的中点. 此题的证明并不难,其结论极易推广至一般二次曲线(双曲线、抛物线). 命题1 设F、l分别为二次曲线的焦点及相应准线,l与二次曲线的一条对称轴'l相交于点,E过F作直线与二次曲线相交于A、B两点,点C在l上,且//'BCl,则AC经过线段EF的中点. 证明 不失一般性, 设二次曲线为椭圆,焦点 在x轴上(如图),离心率 为e,记直线AC与x轴 交点为N,过A作ADl^, D为垂足,因//BCx轴,故BCl^,故有: ||||||||AFBFeADB…  相似文献   

19.
<正>一、问题如图1,设点P是椭圆E:x2/4+y2=1上的任意一点(异于左、右顶点A,B).(1)设椭圆E的右焦点为F,上顶点为C,求以F为圆心且与直线AC相切的圆的半径;(2)设直线PA,PB分别交直线l:x=10/3于点M、N,求证:PN⊥BM.  相似文献   

20.
不少文章都对焦点弦的有关性质的研究以及如何进行探究性学习进行了精彩的阐述,令人深有感触.本文试从命题的角度对此进行进一步的挖掘和探究.不妨设抛物线y2=2px(p>0),则焦点Fp2,0,准线l的方程:x=-p2.直线l1交抛物线于A(x1,y1)、B(x2,y2)两点,交x轴于点C(c,0),又作AA1⊥l,BB1⊥l,垂足分别为A1、B1(如图1所示).探究1若直线l1过焦点F,则y1y2=-p2(定值).那么其逆命题是否成立呢?分析:当l1⊥x轴时,命题显然成立.当l1与x轴不垂直时,设直线l1的方程为x=my+n,联立方程组y2=2px,x=my+n,消去x得y2-2pmy-2pn=0,∴y1y2=-2pn,∵y1y2=-p2,∴n=p2,∴…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号