首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
定理 1 三角形的内、重、界三心共线且重心在中间 ,重界距离等于重内距离的 2倍 .证明 :设△ABC的内心为I,重心为G ,界心为J ,M为BC的中点 ,连结AJ、MI、IJ,AM ,IJ与AM交于G′.由 [1 ]知AJ∥IM ,由[2 ]知 ,AJ=2IM ,从而AG′ =2G′M .可见G′就是重心G .进而知三心共线 ,且JG =2GI.定理 2 三角形界心与重心的连线 ,平行于外心与内心的连线 ,且等于其 2倍 .证明 :在△ABC中 ,设I、O、G、H、J依次为内心、外心、重心、垂心和界心 ,由欧拉线性质知GH =2GO ,由定理 1知JG =2GI,从而知JH∥=2OI.新“欧拉线”$安徽省枞阳…  相似文献   

2.
三角形的外心、重心、垂心共线,此线称为欧拉线。现收集欧拉线的各种证法供参考。设点O、G、H分别是△ABC的外心、重心、垂心,试  相似文献   

3.
(本讲适合初中)任意三角形的外心O、重心G、垂心H三点共线,并且GOHG=12.这就是三角形的欧拉线的定义及性质.欧拉线是一条直线.掌握欧拉线性质须注意两点:(1)外心、重心、垂心三点共线;(2)定比1∶2.欧拉线的常用表示法有三种:(1)外心、垂心法,即欧拉线OH;(2)外心、重心法,即欧拉  相似文献   

4.
对于三角形“四心”(重心、垂心、外心、内心)的有关向量问题是同学们学习中的一个难点,同时也是高考的一个热点.本文就此介绍三角形“四心”的向量形式的证明及应用,供大家参考.结论1(重心) G是△ABC的重心的充要条件是(?)=0.结论2(垂心) H为△ABC的垂心的充要条件是(?).  相似文献   

5.
文[1]证明了三角形垂心的一个性质:定理0若△ABC的垂心为H,且D、E、F分别为H在BC、CA、AB边所在直线上的射影,H1、H2、H3分别为△AEF、△BFD、△CDE的垂心,则△DEF≌△H1H2H3.本文将这一关于垂心的性质推广至平面上任一点,证明垂足三角形的一个性质.过△ABC所在平面上任一点P,作边BC、CA、AB边所在直线的垂线,垂足分别为D、E、F,则△DEF叫做△ABC关于点P的垂足三角形.定理1设△ABC关于任一点P的垂足三角形为△DEF,H1、H2、H3分别为△AEF、△BFD、△CDE的垂心,证则明△DEF≌△H1H2H3.如图1,依题设知FH2∥PD…  相似文献   

6.
我们知道:三角形的内心,外心,重心,垂心等都有其独特的性质,这里,我们将介绍一个三角形外心与垂心相互联系的等式。即定理:三角形任一顶点至垂心的距离,等于外心至对边距离的二倍。已知H是△ABC的垂心,O是外心,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F, 求证:AH=2OD,BH=2OE,CH=2OF。证明:分两种情况讨论  相似文献   

7.
《中学数学教学》1994年第2期刊载了《关于三角形垂心性质的一个定理)一文,提出了如下定理和引理.定理 锐角三角形中,D、E、F是BC、CA、AB上的点,AD、BE、CF交于O,若O为△DEF的内心,那么O是△ABC的垂心.引理 D、E、F分别为锐角三角形边BC、CA、AB上的点,AD、BE、CF交于一点O,若DO平分∠FDE,则AD⊥BC.  相似文献   

8.
众所周知,关于三角形有如下命题: 定理1 设△ABC三条边BC、CA、AB 的中点分别为D、E、F,则△ABC的外心是△DEF的垂心.本文拟应用向量方法,将这个定理推广到一般圆内接闭折线中.为了叙述简便起见,本文约定:符号A(n)表示任意一条平面闭折线  相似文献   

9.
命题 设△DEF是△ABC的内接三角形,D、E、F关于所在边中点的对称点为D′、E′、F′,则 (1)S_(△DEF)=S_(△D′E′F′) (2)S_(△DEF′)=S_(△D′EF),S_(EF′D′)=S_(△E′FD),S_(△FD′E′)=S_(F′DE)  相似文献   

10.
文[1]给出了计算费马点与重心的距离公式,本文给出计算费马点与“心”(重心、内心、外心、垂心、旁心、界心)距离的统一公式.为此,我们先约定:用 a、b、c、p、s 分别表示△ABC 的边长、半周长和面积;F、E、G、O、J、H、I_1、I_2、I_3分别表示△ABC 的费马点、界心、重心、外心、内心、垂心及∠A、∠B、∠C内的旁心;x、y、z 分别表示 FA、FB、FC.于是,我们有:定理1 设 D、E 分别为△ABC 的边AC、AB(所在直线)上的点,BD 与 CE 交于点Q,若(AD)/(DC)=λ,(AE)/(EB)=μ,点 P 为△ABC 所在平  相似文献   

11.
(本讲适合初中)若点 D,E,F 分别、在△ABC 的边 BC,CA,AB上,则称△DEF 为△ABC 的“内接三角形”,而△ABC 为△DEF 的“母三角形”.关于“母子三角形”的面积关系,有下述重要结论.定理如果△DEF 为△ABC 的“子三角形”,且  相似文献   

12.
设△ABC的外心、内心、重心和垂心分别为O,I,G,H,如图众所周知,O、G、H三点共线且OG=1/2GH,所以OG=1/3OH.GH=2/3OH.在△IOH中应用斯特瓦尔特定理有∴将它们代入(1)式得这样,我们得到了三角形的四心:外心、内心、重心和垂心间的距离之间的关系式.三角形中“四心”的关系@布仁$内蒙古海拉尔师专  相似文献   

13.
众所周知,三角形的外心O,重心G,垂心H共线(欧拉线),G在线段OH上且OG∶GH=1∶2.人们进而又推出与欧拉线类似的性质:三角形内心I,重心G,奈格尔点N(也称三角形的界心)共线,G在线段IN上,且  相似文献   

14.
1765年,瑞士数学家欧拉(Euler)发现了如下定理:定理1(欧拉定理) 设△ABC的外接回、内切圆的半径分别为R、r,其外心到内心的距离为d,则d~2=R~2-2Rr这个优美对称的结果,激发我们去寻求三角形中其它特殊点如重心、垂心、内心、外心之间的距离的计算公式.对此,我们有如下的定理2(心距定理) 设△ABC的三边为a、b、c,外接圆、内切圆半径分别为R、r,其外心、内心、垂心到重心的距离分别为e、f、g,外心到垂心的距离为k,则  相似文献   

15.
<正>文[1]中,梁昌金老师证明了三角形中关于外心、重心、垂心、内心的四个优美不等式,统一叙述如下:命题A设P为△ABC的外心(重心、垂心、内心),射线AP、BP、CP分别交三边BC、CA、AB于点D、E、F,交△ABC的外接圆于点A1、B1、C1,则AD/DA_1+BE/EB_1+CF/FC_1≥9.在此基础上,在文末提出了一个猜想:猜想设P为△ABC内部任意一点,射线  相似文献   

16.
在平面几何中,有这样一个定理:“三角形ABC的外心O、重心G、垂心H三心共线,且OG=1/3OH”。  相似文献   

17.
在文[1]结尾处,笔者曾给出一个关于欧拉线的逆斯坦纳点的命题,但没有给出具体证明.本文笔者给出该命题的几何证明,并进一步探讨欧拉线的逆斯坦纳点的性质. 先对某些字母的几何意义进行约定. 如图1,在△ABC中,O、H、N、K分别为外心、垂心、九点圆圆心、Kosnita点,E为欧拉线的逆斯坦纳点,OA、OB、 OC分别为△...  相似文献   

18.
众所周知,三角形的外心O、重心G、垂心H三点共线,且2OG=GH,此线叫做欧拉线.现在我们用三角形的三边来表示这三点间的距离.  相似文献   

19.
(本讲适合高中) 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心。 一、外心 三角形外接圆的圆心,简称外心。与外心关系密切的有圆心角定理和圆周角定理。 例1.过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N,作点P关于MN的对称点P′。试证:P′点在△ABC外接圆  相似文献   

20.
本文给出涉及三角形的伪垂心的一个新的几何不等式。 定理 设△ABC的三条高为AD,BE,CF,垂心为H。点D关于BC边中点的对称点为D′,E关于CA边中点的对称点为E′,F关于AB边中点的对称点为F′,则有 D′E′~2 E′F′~2 F′D′~`2≥1/4(AB~2 BC~2 CA~2) (1)等号成立当且仅当△ABC是正三角形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号