首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《数学通报》88—2《高中数学复习探讨》一文P33例4: 已知椭圆方程x~2/4+y~2=1,过P(4,-2)作一直线l交椭圆于M、N两点,又Q点在直线l上,并且满足2/|PQ|=1/|PM|+1/|PN|。求Q点的轨迹方程。解:设过P点的直线方程为 {x =4+tcosθ y=-2+tsinθ(t为参数)代入椭圆方程得(cos~2θ+4sin~2θ)t~2+(8cosθ-16sinθ)t+28=0由2/|t|=1/t_1+1/t_2得Q点轨迹方程为:  相似文献   

2.
试题:(2012年浙江省高中数学竞赛试卷第19题)设P为椭圆x2/25+y2/16=1长轴上一个动点,过P点斜率为k的直线交椭圆于A、B两点.若|PA|2+|PB|2的值仅依赖于k而与P无关,求k的值.  相似文献   

3.
解答解析几何问题,力求思路正确更求方法得当。有些题目,只要我们选取了一个恰当的坐标系就可以使问题化难为易,化繁为简。下面介绍一下如何建立极坐标系解题。 一、过椭圆或双曲线的中心向椭圆或双曲线上的点所做的连线,若两两成定角,则以中心为极点建立极坐标系。 例1、过椭圆x~2/a~2+y~2/b~2=1的中心作三条夹角均为120°的半径OA、OB、OC,求证:1/|OA|~2+1/|OB|~2+1/|OC|~2为定值。 证明:以O为极点,ox为极轴建立极坐标系,则椭圆的极坐标方程为ρ~2=b~2/(1-e~2cosθ~2)  相似文献   

4.
设平面上有定点P和半径为R的定圆⊙O,过P点向定圆⊙O作任一割线PAB,与⊙O交于A、B两点,由圆幂定理知PA^→·PB^→=PO^2-R^2为常数,则常数k=PA^→·PB^→=PO^2-R^2称为点P对⊙O的幂.平面内与两圆等幂的点的轨迹称为两圆的等幂轴或根轴.  相似文献   

5.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

6.
一、题目(2014年四川理科20)已知椭圆C:x2/a2+y2/b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)证明:OT平分线段PQ(其中O为坐标原点);(ⅱ)当|TF|/|PQ|最小时,求点T的坐标.  相似文献   

7.
1 试题及其解答 (2016年高考四川理第20题)已知椭圆E:x2/a2+y2/b2=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T. (Ⅰ)求椭圆E的方程及点T的坐标; (Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得| PT|2=λ|PA|·|PB|,并求λ的值.  相似文献   

8.
2006年高考四川卷理科填空题第16题是:如下图,把椭圆((x~2)/25) ((y~2)/16)的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P_1,P_2,P_3,P_4,P_5,P_6,P_7七个点,F是椭圆的一个焦点,则|P_1F| |P_2F| |P_3F| |P_4F| |P_5F| |P_6F| |P_7F|=  相似文献   

9.
本刊84年3期《二次曲线切点弦方程的一个应用》一文证明了椭圆4x~2+y~2-16x-4y+16=0切点弦的一条性质,本文将它推广到一般椭圆. 命题.过椭圆外一点P作椭圆两条切线PA、PB,A、B为切点,过P的任一直线交椭圆于Q、R,交弦AB于C,则  相似文献   

10.
(2020年北京卷第20题)已知椭圆C:x^2/a^2+y^2/b^2=1过点A(-2,-1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(-4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q,求|PB|/|BQ|的值.  相似文献   

11.
圆锥曲线综合题是高考常考题型.这些题目的解法灵活多变,其中涉及圆锥曲线交点问题,可借用交点坐标作为参数,从而列式求解(称之为点坐标法).下面通过几例来分析这种方法的应用特点.例1 P,Q是椭圆x2 4y2=16上的两个动点, O为原点,直线OP,OQ的斜率之积为-1/4,求|OP|2 |OQ|2的值.  相似文献   

12.
从椭圆、双曲线的中心O作两条互相垂直的半径OP、OQ,我们称∠POQ为有心二次曲线的直心角.本文探讨它的性质及其应用. 命题1 若直线l:Ax+By=1与椭圆x2/a2十y2/b2=1(a>b>0)交于P、Q两点,且OP⊥OQ(O为坐标原点),则(1)1/|OP|2+1/|OQ|2=1/a2+1/b2=A2+B2;(2)|PQ|=  相似文献   

13.
(2011年江苏卷8)在平面直角坐标系xOy中,过坐标原点的一条直线与函数f(x)=2x的图象交于P、Q两点,则线段PQ长的最小值是.解:P、Q两点关于原点O对称,不妨设P(m,n)为第一象限中的点,则m>0,n>0,n=2m,所以|PQ|2=4|OP|2=4(m2+n2)=4(m2+4m2)≥16(当且仅当m2=44m2,即m=2时取等号)故线段PQ的长的最小值是4.本题上述解法主要考查函数、基本不等式性质等基础知识,换一个思维视角,实际上函数y=2x即xy=  相似文献   

14.
数列与解析几何互相渗透,内容就变得丰富多彩,方法也就更加灵活了. 例1 已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2且垂直于x轴的直线与椭圆的一个交点为B,|F1B| |F2B|=10.椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|,|F2B|,|F2C|成等差数列. (1)求该椭圆的方程;  相似文献   

15.
一、试题呈现 例 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,A(a,0),B(0,b),O(0,0),△AOB的面积为1.(1)求椭圆C的方程。(2)设P为椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N。求证:|AN|·|BM|为定值。  相似文献   

16.
当解有关解析几何中的综合题时,常遇到求极值的问题,有时需要应用点关于直线对称的性质,解满足以距离和最小或距离差的绝对值最大为条件的综合题.一、解以满足距离和最小为条件综合题我们知道,如果已知A、B两点在直线的同侧,如何在直线L上找一点M使|MA|+|MB|最小:可先求出点A(或B)关于直线L的对称点A′(或B′),连结A′B(或AB′),它与L的交点为M,则M必满足条件|MA|+|MB|最小.【例1】已知直线L:x-y+9=0,以椭圆x2+4y2=12的焦点为焦点,且过L上一点M的椭圆,使其长轴最短,求椭圆的方程.分析:从x2+4y2=12可知两焦点为F1(-3,0)和F2(3,0)…  相似文献   

17.
问题 :已知椭圆 x22 5 +y216 =1的左右焦点分别是 F1 ,F2 ,点 M在椭圆上 ,且 M到两焦点的距离之积为 16 ,则 M的坐标为    .题目本身并不难 ,由椭圆定义知 |MF1 |+|MF2 |=2 a=10 ,又由条件知 |MF1 |·|MF2 |=16 ,于是 |MF1 |=2 ,|MF2 |=8或|MF1 |=8,|MF2 |=2 .又椭圆的焦点到长轴两个端点的距离恰为 2与 8,因此 M是长轴的两个端点之一 ,于是 M的坐标应是 (- 5 ,0 )或 (5 ,0 ) .一个疑问 :长轴的两个端点固然满足条件 ,但除了这两个端点以外还有没有其它满足条件的点呢 ?上述解法并没有给出确切的答案 ,因此严格地说上述解法是…  相似文献   

18.
文[1]给出了几个关于椭圆切线的典型性质,读后深受启发,本文对圆锥曲线进行了深入探究,又得到了圆锥曲线一组优美性质,现整理出来,供大家参考.性质1已知椭圆C:x2/a2+y2/b2=1(a>b>0),点P(m,0),E(a2/m,0)是x轴上两动点,其中|m|>a,过点P作直线l与椭圆C相交于A、B两点,则线段AE、BE与x轴所成的锐角相等.证明:如图1给出了m>a的情形,  相似文献   

19.
<正>人教2007年1月第2版,普通高中课程标准实验教科书A版,数学选修4-4,坐标系与参数方程,第38页例4:如图1所示,AB,CD是中心为点O的椭圆的两条相交弦,交点为P.两弦AB,CD与椭圆长轴的夹角分别为∠1,∠2,且∠1=∠2.求证:|PA|·|PB|=|PC|·|PD|.笔者在探究此例题的解答思路时,看到|PA|·|PB|=|  相似文献   

20.
性质:已知椭圆方程为x2/a2 y2/b2=1(a>b>0),如图1,A1、A2是左右两顶点.O为坐标原点,B1、B2分别是椭圆上下两顶点,F为右焦点,Q为椭圆上任意一动点,则|QF|min=|FA2|(|QF|max=|FA1|,证明略),即椭圆上一动点到焦点F的最小距离为|FA2|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号