首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于正整数k,设ψ(k)是k的Dedekind函数.本文证明了方程ψ(nx y))=nxψ(ny) nyψ(nx)无正整数解(n,x,y).  相似文献   

2.
用方程的思想求分式函数的值域   总被引:1,自引:0,他引:1  
求形如下列的有理分式函数的值域 y=(a_1x~2+b_1x+c_1)/(a_2x~2+b_2x+c_2)(x∈D,D为定义域) (1)一般是把原函数式化成关于x的一元二次方程φ(y)x~2+ψ(y)x+g(y)=0 (*)(其中φ(y)、ψ(y)、g(y)是关于y的表达式),根据方程(*)的判别式△=ψ~2(y)-4φ(y)g(y)≥0求出y的取值范围,即得原函数的值域,这就是所谓的“判别式法”。大家知道,用上述方法求出的结果是不一定可靠的,可能会得出错误的结论。就方法本身而言,也使人疑虑:为什么能这样求?在  相似文献   

3.
对于正整数k,设φ(k)和ψ(k)分别是k的Euler函数和Dedekind函数.证明了方程φ((ψ(x))y)=xy仅有正整数解(x,y)=(1,t),其中t是任意正整数.  相似文献   

4.
求正弦曲线y=Asin(ωx ψ)的对称轴方程及由其对称轴方程确定参数A、ω、ψ的值,是近年高考的热门试题。由于现行教材中未有现成的例题或习题的解法可循,因而很多学生在求解此类试题时感到比较茫然。下面介绍一种简单解法,供同行们教学参考。  相似文献   

5.
<正>求形如y/x的取值范围是代数试题中常见的题型,怎么求解呢?解法比较多,其中,构造含y/x有形式的方程不失为比较简单的一种方法。一、整体置换是求两个变量比值即形如"y/x"取值范围的主要方法例1已知x、y满足(x+2)2+y2+y2=4,  相似文献   

6.
函数是中学数学研究的最主要的内容之一,函数的思想方法贯穿于整个高中数学.运用函数思想解题,重在对问题中的变量的动态进行研究,从变量的运动变化寻找解题的突破口.函数和方程在一定条件下可以互相转化,本文通过转化,多角度利用函数思想确定一类方程中的参数,下面举例说明.例1若方程a x=x a的根只有一个,求实数a的取值范围.解法一(1)a=0时,方程有唯一根x=0;(2)a≠0时,原方程等价于x=x/a 1.方程根的个数等于函数y=x与函数y1x1=a .图象的交点个数.函数y=x图象为折线,函数y=x/a 1图象为过定点(0,1)的直线,可得1/a≥1或1/a≤?1时两函数图象有…  相似文献   

7.
文[1]指出:解方程(不等式)的实质就是对方程两端同时施以各种运算,即等价变形,分离出一个变量,即解出一个未知数,在多元方程(不等式)中解出一个未知数就得显函数,如在F(x,y)=0中解出y就得显函数y=f(x),同样在不等式F(x,y)>0中解出y就得不等式y>f(x)(或y相似文献   

8.
20 0 4年全国高考上海卷第 2 0题是一个有关函数与方程的综合性问题 ,命题组分别给出了用函数思想 (数形结合 )和方程方法解答的两种参考答案 .本文给出导数解法 ,并将该问题推广 .试题 已知二次函数 y =f1 (x)的图象以原点为顶点且过点 ( 1,1) ,反比例函数y= f2 (x)的图象与直线 y=x的两个交点间的距离为 8,f(x) =f1 (x) f2 (x) .( 1)求函数y=f(x)的表达式 ;( 2 )证明 :当a >3时 ,关于x的方程f(x) =f(a)有三个实数解 .由于本题的第 ( 1)小题是常规问题 ,不作讨论 ,本文只探索第 ( 2 )小题 .1 与函数思想相结合的导数解法解法 1 由 ( 1)…  相似文献   

9.
众所周知 ,“根与系数的关系”的应用之一是构造方程 ,但它不是构造方程的惟一方法 ,本文举例介绍构造方程的另两种方法 ,供同学们参考。例 1 求作一方程 ,使它的各根分别是方程x2 - 3x + 2 =0的各根的 3倍。解法一 :设所求方程的未知数为 y。由题意 ,得 y =3x ,即x =y3,代入原方程 ,得 ( y3) 2 - 3·y3+ 2 =0整理 ,得 y2 - 9y + 1 8=0 .解法二 :设所求方程为 y2 + py + q =0 ,由题意 ,得 y =3x ,∴ ( 3x) 2 + 3px + q =0 ,即 9x2 + 3px + q =0 .此方程与原方程是同解方程 ,∴19=- 33p =2q,∴p =- 9,q =1 8.则所求作方程为 y2 - 9y + 1 8=0…  相似文献   

10.
全日制普通高级中学教科书(必修)《数学》第二册(上)(以下简称教科书)P89.10.题目求当点(x,y)在以原点为圆心,a为半径的圆周上运动时,点(x y,xy)的轨迹方程.经研究发现,题目解法丰富,意义广泛,可推广为解决诸多问题的通法.解法1:由已知,圆方程为x2 y2=a2,P(x0,y0)是圆上的点,Q(  相似文献   

11.
我们知道,Riccati方程 y′=f(x)y~2+g(x)y+h(x)在通常情况下,不能用初等函数求积表出。 本文利用文[5]作变量替换的方法,给出了几类特殊Riccati型方型的求解法,并提供了通积分的表达式,所得结果是对文[1]、[2]、[3]有关结论的推广,直接应用所得结果解文[1]、[2]、[3]、[4]的有关Riccati型方程,其解题过程较为简便。  相似文献   

12.
对于一类二元函数方程(是指函数方程中表示未知函数的字母有两个)f(w(x,y))=R(f(x)、f(y))(1)的可微解的一个求法。这种解法是把函数方程(1)的形式解  相似文献   

13.
我们知道,确定一条直线的方程,常用的方法有轨迹法和方程法即待定系数法.其中点斜式,两点式都是直线方程的特殊形式.本文着重谈谈求直线方程的非常规解法.1利用方程的同解原理求直线方程例1对于直线l上任意点(x,y),点(2x 4y,3x y)仍在直线l上,求直线l的方程.解因为x=y=0时,2x 4  相似文献   

14.
黎卡提(Riccati)方程y′=p(x)y2+q(x)y+r(x)一般情况下是不可积的,本文利用变量变换先将Riccati方程化成二阶变系数齐线性方程,再化成二阶常系数线性方程.从而得到Riccati方程的若干可积条件.  相似文献   

15.
本文讨论一类特殊方程x=f{f[…f(x))]}的解。方程右边为单调递增函数f(x)的n重复合函数,简记为f_n(x),(n=1,2,3,…)。如方程。显然这类方程如果用通常的解法是很繁的,现在我们运用复合函数的单调性来讨论这类方程的解法。引理若y=f(u)、u=φ(x)分别为集合D_u、D_x上严格递增函数,且φ(x)的值域D_φ(?)D_u,则y=f[φ(x)]在D_x上严格递增。  相似文献   

16.
一元二次方程是贯穿于初、高中数学的重要知识点,也是中考命题的“热点”,故本文以一些典型题目为例,介绍一元二次方程学习中的要点.一、掌握一元二次方程的三种解法要牢固掌握一元二次方程的配方法、因式分解法和公式法三种解法.例1用换元法解方程2x2-2x2+3x-1姨=3-3x.分析:这是一个无理方程.初中阶段不学习,但用初中知识也可解.解法1(配方法)设y=2x2+3x-1姨,显然y≥0.原方程即为y2-y-2=0.∴(y-12)2=94.解得y1=2,y2=-1(舍去)∴2x2+3x-1=4,解得x1=1,x2=-52.解法2(因式分解法)同解法1,得y2-y-2=0,即(y-2)(y+1)=0.∴y1=2,y2=-1(舍去).下同解法…  相似文献   

17.
六年制重点中学高中数学课本《解析几何》中有不少习题,若应用下述结论将使解法大大简化。定理设两条曲线的方程是f_1(x,y)=0与f_2(x,y)=0,P(x_o,y_o)是它们的交点。则方程为f_1(x,y) λf_2(x,y)=0(λ是任意常数)的曲线也经过点P(x_o,y_o). 证明因为P(x_0,y_0)是f_1(x,y)=0  相似文献   

18.
阐述并论证恰当方程的一种新解法.结论:在对恰当方程的求解过程中,只需把M(x,y)对x积分和N(x,y)对y积分,然后取它们的“并集”,使之等于c,就得到了方程的通解..  相似文献   

19.
<正>三角函数的参变量求值问题,主要考查三角函数式恒等变形及运算能力,通过三角函数中角的变换、函数名称变换、运算结构变换,能够和其他知识有机地结合起来,达到"事半功倍"的效果。例题若x∈(0,π/4],求使关于x的方程cos x+a(1/2)sin x=a(1/2)sin x=a(1/2)有解的正数a的取值范围。解法1:分离变量法。原方程变为a(1/2)有解的正数a的取值范围。解法1:分离变量法。原方程变为a(1/2)=  相似文献   

20.
刘维尔早已证明黎卡堤方程在一般情况下,不能用初等解法求解.本文给出几类特殊的黎卡堤方程的初等解法.定理1黎卡堤方程y一川X灯’十以X)y+wt(。),其中P,Q,R’EC,mEC,且满足条件P(x)R’(x)+Q(x)R(x)+(m-l)R’(x)=0时,则方程可积,其通解为证明:令y=X+B(X),代入方程后可得此为贝努利方程,积分此方程得代回原来变量,即有y=X+R(X)为原方程的通解.定理2黎卡堤方程y=P(x灯‘+Q(x)y+R(x),其中P、Q、R6C,且满足条件n。‘P(x)十忡(X)+R(X)=0,则此方程可积,其通解为y“u…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号