首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高中《代数》上册P193有这样一道例题: 求sin~210° cos~240° sin10°cos40°的值。 无独有偶,近几年来,与这道例题类似的考题有 (1)求cos~215° cos~275° cos15°cos75°的值。(’90全国高考题) (2)求值:cos~210° cos~250°-sin~240°sin~280°。(’91全国高中联赛题) (3)求sin~220° sin~280° 2~(1/3)sin~220°cos80°的值。(’92全国高考题) (4)求cos~210° sin~240°-cos10°sin40°的值。(’93湖南高中会考题) (5)求sin~220° cos~250° sin20°cos50°的值。(’95全国高考题) 从例题、考题所显示的信息情景,我们易于获得下述命题:  相似文献   

2.
近几年全国高考数学题,有下列两道类似的题:题1 求sin~2(20°) cos~2(80°) 3~(1/2)sin20°cos80°的值.(1992年全国高考题)题2 求 sin~2(20°) cos~2(50°) sin20°cos50°的值.(1995年全国高考题)事实上,这两道题都是依纲扣本,源于课本的题,其课本中原题型见下题.题3 求sin~2(10°) cos~2(40°) sin10cos40°的值.(高中《代数》上册(必修)第193页例4)以上三道题的共同特征是;它们的结构都相同,尽管各三角函数的角都非特殊角,但它们都可以通过三角函数的恒等变换,在把其中一部分三角函数化成特  相似文献   

3.
近十年的一些高考题,若应用整体思想来处理,倒是别开生面,妙趣横生,它具有化生为熟、化繁为简的奇特作用,本文从九个方面举例说明。一、在三角中的应用例1求 sin~220° cos~250° sin20°cos50°的值。(95全国)解:整体代换令 A=原式;整体构造令 B=cos~220° sin~250° cos20°sin50°;整体运算 A B=2 sin70°  相似文献   

4.
本文举例介绍利用一些熟知的涉及三角形三内角的三角恒等式去解决一类三角函数式求值的问题。例1.求cos~220° cos~240°-cos20°cos40°之值。解在恒等式cos~2A cos~2B cos~2C 2cosAcosBcosC=1中,令A=20°,B=40°,C=120°,有cos~220° cos~240° (1/4)-cos20°cos40°=1,于是cos~220° cos~240°-cos20°cos40°=(3/4)。例2.求sin~220° sin~240°=sin20°sin40°之值。  相似文献   

5.
1995年全国高考理工数学第(22)题:求sin~220° cos~250° sin20°cos50°的值.在必修教材中有明显背景,是由代数上册第193页例4:“求sin~210° cos~240° s1n10°cos40°的值”改换两个数据得到,并且这两道题的答案都是3/4.  相似文献   

6.
一、高中部分 我们对高中代数上册P.193例4“求sin~210°±cos~240° sin10°cos40°的值”进行演变。 变式1:cos~280° cos~240° cos80°cos40°=3/4。 变式2:cos~2A cos~2B cosA·cosB=3/4的充要条件是A B=2kπ±(2/3)π或A-B=2kπ±(2/3)π,(k∈Z)。 证明:先对原式进行恒等变形: cos~2A cos~2B cosAcosB =1 1/2(cos2A cos2B) cosA·cosB  相似文献   

7.
曹武 《新高考》2008,(11):35-35
题目求sin~220°+cos~250°+sin20°cos50°的值.这是1995年的一道高考题,属于三角函数求值问题中一种常见而重要的题型——给角求式(值).注意角之间的关系是解决这类问题的关键.笔者在此提供六种解法,供大家参考.  相似文献   

8.
1995年数学(理工类)第22题是: 求sin~220° cos~250° sin20°cos50°的值。 解法一 (利用降幂公式及积化和差公式)  相似文献   

9.
三角中的降幂公式:sin~2α=(1-cos2α)/2,cos~2α=(1 cos2α)/2由倍角公式变形而得,其应用十分广泛.例1.化简cos~2(120° A) cos~2(240° A) cos~2A.解:原式=(1/2)[1 cos(240° 2A)] (1/2)[1 cos(480° 2A)] (1/2)[1 cos2A]=3/2例2.求sin~4 22.5° sin~4 67.5° sin~4 112.5° sin~4 157.5°的值.解:原式=(sin~2 45°/2)~2 (sin~2 135°/2) (sin~2 225°/2)~2 (sin~2 315°/2)~2  相似文献   

10.
题目:(代数上册P.193例4)求sin~2(10°) cos~2(40°) sin10°cos40°的值。 一、解法探索 解法一 常见解法 sin~2(10°) cos~2(40°) sin10°cos40°= 解法二 构造图形法  相似文献   

11.
1995年全国高考数学试题理科(22)题:求 sin~2 20°+cos~2 50°+sin20°cos50°的值.答案为3/4,又当我们将式中的20°和50°分别换为10°和40°,奇妙地发现 sin~2 10°+cos~2 40°+sin10°cos40°的值仍为3/4,由此引起我们思考:20°,50°,与10°,40°之间有什么关系呢?容易发现等差关系50°-20°=40°-10°=30°.是否有一般性呢?再求 sin~2 19°+cos~2 49°+sin19°cos49°的值.解:原式=1/2(1-cos38°)+1/2(1+cos98°)+sin19°cos49°  相似文献   

12.
题化简sin~2 20° cos~2 50° sin20°cos50°.我想出了这道题的两个解法:解法1 sin~2 20° cos~2 50° sin20°cos50° =1-cos40°/2 1 cos100°/2 cos20°-sin30°/2=2-sin30° (cos100° cos20°)-cos40°/2  相似文献   

13.
考察下列恒等式: cos2θ=2cos~2θ-1; cos2θ=-(2sin~2θ-1) cos3θ=4 cos~3θ-3cosθ; sin3θ=-(4sin~3θ-3sinθ) cos4θ=8 cos~4θ-8cos~2θ+1; cos4θ=8sin~4θ-8sin~2θ+1 cos5θ=16cos~5θ-20cos~3θ+5cosθ;sin5θ=16sin~5θ-20sin~3θ+5sinθ, ………………………………我们或许会猜测;是否存在某个定理,可以揭示上列展开式之间的微妙关系呢? 回答是肯定的。本文将提出并证明这个定理。定理若已知casnθ=F(cosθ))  相似文献   

14.
在三角函数中,我们经常会遇到如下一类型的题:例1已知sin(α 45°)=3/5,45°<α<135°求sinα.大部分学生会如下的解答思路:由两角的正弦公式有:sin(α 45°)=sinαcos45° cosαsin45°3/5.即2~(1/2)sinα 2~(1/2)cosα=3/5,①又sin~2α cos~2α=1.②联立①②解方程可求解.且45°<α<135°,所以sinα>0,cosα<0,进一步可确定sivα的取值.此种解法,需要解方程,其中的运算过程稍显繁琐.若仔细分析已知条件,可以将α化为(α 45°)-45°.45°为特殊角,其正弦值与余弦值均已知;又由α的取值范围可求α 45°的取值范围,整体运用α 45°的三角函数值,从  相似文献   

15.
构造法是数学中常用的也是重要的方法之一.本文将通过构造辅助方程求某些三角函数式的值,而这些三角函数的值都是不易直接求解的。例1 求sin18°的值. 解:设α=18°,那么3α=90°-2α,从而sin3α=cos2α,即 3sinα-4sin~3α=1-2sin~2α, 4sin~3α-2sin~2α-3sinα 1=O.这说明sin18°是方程4x~3-2x~2-3x 1=0的一个根. ∵ 4x~3-2x~2-3x 1=(x-1)(4x~2 2x -1). ∴原方程的根为1,(-1±5~(1/5))/4,于是sin18°=(-1 5~(1/5))/4. 例2 求 cosπ/7-cos2π/7 co3π/7的值。解:设α=π/7,并设原式为y,那么y=cosα cos3α cos5α,从而  相似文献   

16.
题目已知sinαcosβ=-1/2,求cosαsinβ的取值范围.引申1已知sinαcosβ=α,cosαsinβ=b,则|a|+|b|≤1,当且仅当sin~2α+sin~2β=1时等号成立.证明|a|+|b| =|sinα||cosβ|+|cosα||sinβ|≤(sin~2α+cos~2β)/2+(cos~2α+sin~2β)/2=1,  相似文献   

17.
利用配对法 巧解高考题   总被引:1,自引:0,他引:1  
研究高考试题的解法,对高考复习具有重要的意义,本文采取配对的方法,可以获得一些高考题的巧解。下面举例说明配对法在解高考题中的应用。 一、和式配对 例1 sin20°cos70° sin10°sin50°的值是( ). A.1/4 B.3~(1/2)/2 C.1/2 D.3~(1/2)/4 (1993年全国高考理科试题) 分析:本题原型见高中《代数(必修)》上册P.190,3(3)题。根据该题的特点,可以利用和差角公式sin(α±β)=Sinαcosβ±cosαsinβ和cos(α±β)=cosαcosβ于sinαsinβ配对解之。 解:设a=sin20°cos70° sin10°sin50°, b=cos20°sin70° com10°cos50°. 则 a b=sin90° cos40°=1 cos40°, ① b-a=sin50° cos60°=1/2 cos40°. ② 由①一②得 2a=1/2,即a=1/4.故选A.  相似文献   

18.
一些三角问题转化为代数问题,运用韦达定理逆定理构造方程来解有时是很简便的。兹举例说明之。 [例1] 已知sinα·cosα=-(3~(1/2))/4,且(π/2)<α<3π/4,求sinα和cosα的值。解:∵(sinα+cosα)~2=sin~2α+cos~2α+2sinα cosα=1-(3~(1/2))/2,(又(π/2)<α<(3π/4)), ∴sinα+cosα>0。  相似文献   

19.
同角三角函数关系式“sin~2α cos~2α=1”在三角恒等变形中具有广泛的应用.本文作一介绍,供大家参考.一、正用例1已知tanα=m≠0,求sinα.解:由sin~2α cos~2α=1,sinα/cosα=tanα,可得tan~2α=sin~2α/cos~2α=1-cos~2α/cos~2α= 1/cos~2α-1,所以cos~2α=1/1 m~2,可得cosα=±1/(?)~(1/2).又m≠0,知α终边  相似文献   

20.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号