首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在x1+x2+…+xn=m中,令x1=mn+t1,x2=mn+t2,…,xn=mn+tn,其中t1+t2+…+tn=0,这就是均值换元法.如在x+y=a中,可令x=a2+t,y=2a-t.一、用均值换元法化简计算例1求值:√987×989×991×993+(993-989)(991-987).解令a=987+989+4991+993=990,∴原式可化为√(a-3)(a-1)(a+1)(a+3)+4×4=√(a2-1)(a2-9)+16.令b=(a2-1)+(a2-9)2=a2-5,∴√(a2-1)(a2-9)+16=√(b+4)(b-4)+16=b=a2-5=9902-5=980095.二、用均值换元法证明不等式例2已知a+b+c=3,求证:a2+b2+c2≥3.证明令a=1+t1,b=1+t2,c=1+t3,其中t1+t2+t3=0.∴a2+b2+c2=(1+t1)2+(1+t2)2+(1+t3)2=3+2(t1+t2+t3…  相似文献   

2.
一、巧用运算律例1计算-117×(132-0.125)÷(-1.2)×(-1313).解原式=-117×(132-18)×(-56)×(-1613)=-117×1613×(132-18)×56=-9×(12-2)×56=9×32×56=1114.二、合理分组例2计算1-2+3-4+5-6+7-8+…+4999-5000=(1999年“希望杯”初一数学竞赛试题)解原式=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=(-1)+(-1)+(-1)+(-1)+…+(-1)(共有2500个)=-2500.三、反序相加例3计算12+(14+34)+(16+36+56)+…+(198+398+…+9798)=(1998年“五羊杯”初一数学竞赛试题)解设原式=S,将每个括号内的分数反序排列,可得S=12+(34+14)+(56+36+16)+…+(9798+…+39…  相似文献   

3.
换元法是十分重要的数学方法 ,特别是在中考解分式方程时应用极广 .那么如何恰当地换元 ,则要根据各个方程自身的结构特点加以分析 .一、整体换元例 1 解方程 :xx- 12 - 5 xx- 1 +6 =0 .(2 0 0 1年新疆生产建设兵团中考题 ) 解 设y=xx - 1 ,则原方程可化为y2 - 5y+6=0 .解得y1 =2 ,y2 =3.当y=2时 ,xx- 1 =2 .解得x=2 .当y=3时 ,xx- 1 =3 .解得x=32 .经检验 ,x1 =2 ,x2 =32 是原方程的根 .二、倒数换元例 2 解方程 :x2 -x- 1 2x2 -x- 4 =0 .(2 0 0 1年黑龙江省哈尔滨市中考题 ) 解 设y=x2 -x,则原方程可化…  相似文献   

4.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

5.
转化是中学数学解题的基本思想。在含有多个变元的问题中,可以选取某个变元做为主要变元,不妨称之为主元。将问题转化为关于该主元的式子、方程或函数,使问题获得巧解。这种转化的方法,称为主元法。下面举例说明这种方法在解题中的应用。 一、分解因式 例1 分解因式: (1+y)~2-2x~2(1+y~2)+x~4(1-y)~2。 (1986年江苏省扬州市初一数学竞赛试题)  相似文献   

6.
换元法是将无理方程转化为有理方程、将分式方程转化为整式方程的重要方法 ,它可以起到将方程次数降低、形式化简的作用 .因而换元法是中考、竞赛中考查的重点内容 .例 1 解方程 :x2 +x +1-6x2 +x=0 .( 2 0 0 0年北京市中考题 )解 设y =x2 +x ,则原方程变形为y +1-6y =0 .去分母整理 ,得y2 +y -6=0 .解得y =-3或y =2 .当y =-3时 ,x2 +x =-3,即x2 +x +3=0 .方程无实数根 .当y =2时 ,x2 +x =2 ,即x2 +x -2 =0 .解得x1=-2 ,x2 =1.检验略。评注 换元的实质就是将代数式 (x2 +x)看做一个整体 .当然我们也可将 (x2…  相似文献   

7.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

8.
一次方程组是进一步学习方程组的基础 ,在中考和一些数学竞赛试题中 ,经常以其解法独特、构思巧妙的形式出现 .对于一些复杂的方程组 (如未知数系数较大、方程个数较多等 ) ,除了掌握代入消元法和加减消元法外 ,还应根据方程组的具体结构特征 ,灵活选用一些特殊的方法和技巧 ,巧妙消元 ,简化解题过程 ,达到化难为易 ,化繁为简 ,化未知为已知的目的 .举例如下 :一、整体代入法例 1 解方程组2 x +3( 5x +7y) =4  ( 1)12 ( 5x +7y) =1   ( 2 )分析 :方程 ( 1)与 ( 2 )中都含有 5x +7y的项 ,可把它看作“整体”,由 ( 2 )求出 5x +7y的值 ,代…  相似文献   

9.
因式分解是一种重要的恒等变形,它的应用十分广泛.下面举例说明.例1 化简:(1-(1/2~2))(1-(1/3~2))(1-(1/4~2))…(1-(1/n~2)).解原式=(1-(1/2))(1+(1/2))(1-(1/3))(1+(1/3))(1-(1/4))(1+(1/4))…(1-(1/n))(1+(1/n))=(1/2)×(3/2)×(2/3)×(4/3)×(3/4)×(5/3)×…×((n-1)/n)×((n+1)/n)=(1/2)×((n+1)/n)=((n+1)/(2n)).  相似文献   

10.
换元法是解题的一种重要方法,平均值换元法又是一种特殊的、巧妙的方法。有些类似问题若能灵活地利用这种方法,则步骤极为简捷。举例如下:一、在解方程方面例1 在实数范围内,解方程(x+1)~4+(x+3)~4=272。分析若直接把左边括号展开,此方程可整理为 x 的四次方程,不好解。若考虑到x+1与 x+3的平均值为 x+2,令 y=x+2,则 x+1=y-1,x+3=y+1,这时原方程化为(y-1)~4+(y+1)~4=272,展开后求解,较为简便。  相似文献   

11.
一、换元法一般的换元法是,通过设辅助未知数施行变量代换,将高次方程转化为低次方程,将分式方程转化为整式方程,将无理方程转化为有理方程。要解某些较难的方程,还需运用一些有一定技巧的换元方法: 1.平均值换元法例1 解方程(((x+1)~(1/3))-1)~4+(((x+1)~(1/3))-3)~4=16。(注:本文中各方程均在实数集内求解)  相似文献   

12.
一元二次方程历来是初中数学竞赛的重点和热点,利用建构一元二次方程的思想解决相关问题的命题,可以说备受命题者的青睐,因而这类赛题在各级各类数学竞赛中频频出现.它的应用之广,作用之妙,常常令人叫绝.本文结合具体竞赛试题,分类介绍建构一元二次方程解数学竞赛试题的若干应用.1建构二次方程求值例1已知x,y均为实数,且满足xy+x+y=17,x2y+xy2=66.求x4+x3y+x2y2+xy3+y4的值.(2000,山东省初中数学竞赛)分析:由观察可知,题设两个等式均可表示为x+y与xy的形式,且等于常数,因此,可利用与系数的关系建构一元二次方程求解.解由已知条件可得xy+(x+y…  相似文献   

13.
一元二次方程根的判别式是初中数学中的一个重要内容,应用其解题是初中数学中的一种重要方法.在近年来全国各省市数学竞赛中屡见不鲜,本文举例说明其广泛应用,供参考.一、求参数值例1(2003年全国初中数学竞赛天津赛区初赛)已知二次函数y=ax2+bx+c,一次函数y=k(x-1)-k24,若它们的图象对于任意的实数k都只有一个公共点,则二次函数的解析式为.解:由题意得y2=ax+bx+cy=k(x-1)-k24整理得:ax2+(b-k)x+(c+k+k24)=0.又由根的判别式Δ=(b-k)2-4a(c+k+k24)=0,即(1-a)k2-2(b+2a)k+(b2-4ac)=0.(1)由于(1)中对任意的实数k均成立,故解得a=1,b=-2,c=1.二、…  相似文献   

14.
分式的条件求值是数学竞赛中常见的问题.解这类竞赛题目,常用到以下几种方法.一、求值代入法例1已知x满足方程1/{2001-(x/x-1)}=1/2001,则x3-2001/x4+29=_____.(2001年北京市中学数学竞赛初二试题)解:由已知方程可得x/(x-1)=0,则x=0.∴x3-2001/x4+29=-2001/29=-69.二、整体代入法例2若1/m=1/n+1/3,则3m-5mn-3n/m-mn-n=_____.(2002年全国中小学生数学公开赛初三试题)  相似文献   

15.
近年来,各省市中考及初中数学竞赛中,经常有最值问题出现,现举例说明·一、利用判别式求最值例1(2004年全国初中数学竞赛试题)实数x、y、z满足x+y+z=5①,xy+yz+zx=3②,则z的最大值是·分析:消去一未知数,使之变为z为参数的一元二次方程·解:由①得y=5-x-z③把③代入②得x(5-x-z)+z(5-x-z)+zx=3整理得:x2+(z-5)x+z2-5z+3=0因为x为实数,所以Δ≥0所以(z-5)2-4(z2-5z+3)≥0所以(3z-13)(z+1)≤0所以-1≤z≤133·二、利用非负数性质求最值例2多项式P=2x2-4xy+5y2-12y+13的最小值为·分析:将多项式配方,使之化为几个非负数之和·解:P=2x2-4xy+5y2…  相似文献   

16.
在数学竞赛中,有些复杂的或具有某种特殊结构的方程用常规方法求解较繁难,但运用增元法可达到化繁为简,快速求解的目的.本文略举几例予以说明.1解整式方程例1解方程x=(x2+3x-2)2+3(x2+3x-2)-2.(1996年四川省初中数学竞赛试题)分析若去括号,会得到一元四次方程,对初中学生来说求解实非容易,故不可取.若注意到括号内整体特征,设y=x2+3x-2,从而将一元方程转化为二元二次方程组,易解.解设y=x2+3x-2,则有x=y2+3y-2,(1)y=x2+3x-2.(2)(1)-(2)得(x-y)(x+y+4)=0.当x=y时,由(2)解得x1,2=-1±3;当x+y+4=0时,将y=-(x+4)代入(2),解得x3,4=-2±2.2解分式方…  相似文献   

17.
2006年的初中数学竞赛已经降下帷幕,暑期之中相对较为宽余,笔者翻阅了全国各地2006年的初中数学竞赛题———代数解答题,发现不外乎以下几种类型.现分类讲解如下,供数学爱好者参考.1与二次方程有关的解答题例1(全国初中数学联赛)已知关于x的方程x2+2(a+2b+3)x+(a2+4b2+99)=0无相异两实根,则满足条件的有序正整数组(a,b)有多少组?分析与解二次方程是初中数学的核心内容,当然也是初中数学竞赛的必考内容.但作为竞赛题,除了应用二次方程中的判别式定理、韦达定理等方程理论之外,与相关数学内容如不等式、整数性质的有机结合,即具有一定的综合性…  相似文献   

18.
最值问题是一个古老而又崭新的课题,它渗透到代数、几何、三角、不等式等各个学科领域,随着数学内容的不断深化,解最值问题的方法也愈加丰富.这类题不仅涉及面广,而且蕴涵着丰富的数学思想和方法.本文介绍一些常见的方法.1 配方法将代数式配成平方和的形式,利用平方是非负数这一特点而求其最值,但应注意能否同时取得最值.例1 求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.分析:对于多元函数,可选定其中一个作为主元来进行配方.解:原式=5x2+6xy+3y2-30x-20y+46=5x2+(6y-30)x+3y2-20y+46=5[x2+6y-305x+(3y-155)2]-(3y-155)2+3y2-…  相似文献   

19.
换元法是数学中的一个重要的思想方法 .巧妙地利用换元法解题 ,可以使问题化繁为简 ,化难为易 .例 1 已知 x 3- x- 1 =2 ,求x 3 x- 1的值 .解 设 x 3 x- 1 =m,将此式与已知式相乘可得 ( x 3) - ( x- 1 ) =2 m,∴m=2 ,即 x 3 x- 1 =2 .评注 这种在求某代数式的值时 ,把这个式子的本身进行换元的方法可称之为“自身代换 .”例 2 解方程( 7 4 3) x2 ( 2 3) x- 2 =0 .解 因为 ( 2 3) 2 =7 4 3,故可设 t=( 2 3) x,则原方程即t2 t- 2 =0 ,解得 t1 =1 ,t2 =- 2 ,∴x1 =( 2 - 3) t1 =2 - 3,x2 =( 2 - 3) t2 =- 4 2 3.评…  相似文献   

20.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号