首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“sinA/2sinB/2sinC/2≤1/8,(A+B+C=π)是三角形中常用到的一个不等式。这个条件不等式可以有多种证法。一般数学习题集、数学资料都把以下二个证法作为基本证法证法一:设sinA/2sinB/2sinC/2=t 则t=1/2(cos(A-B)/2cos  相似文献   

2.
题在△ABC中,证明或否定不等式:40/27<sinA/sinA+sinB+sinB/sinB+sinC+sinC/sinC+sinA<41/27.  相似文献   

3.
在△ABC中,有常见的不等式sinA+sinB+sinC≤3√3/2,(1). 约定:△ABC的三边长为a,b,c,半周长为s,面积为△,外接圆和内接圆的半径分别为R和r.  相似文献   

4.
在△ABC中,不等式:sinA/2·sinB/2·sinC/2≤1/8(等号只在正三角形中成立)即三角形三内角之半的正弦积不大于1/8。兹将几种证法罗列如下。为了方便,记y=sinA/2·sinB/2·sinC/2,A、B、C和a、b、c分别表示△ABC的三内角和三边长,sinA/2、sinB/2、sinC/2均为正数。下不一一赘述。  相似文献   

5.
在△ABC中,有常见的不等式sinA+sinB+sinC≤3√3/2.(1)  相似文献   

6.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

7.
设A、B、C为三角形的三内角,则有 sin2A sin2B sin2C≤3(3~(1/2))/2 (1) sinA sinB sinC≤3(3~(1/2))/2 (2) sinA/2 sinB/2 sinC/2≤3/2 (3) sinA/3 sinB/3 sinC/3≤3·sinπ/9 (4) ……………… sinA/k sinB/k sinC/k≤3·sinπ/3k (5)  相似文献   

8.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

9.
△ABC的外接圆与内切圆半径分别为R,r,证明:sinA/2+sinB/2+sinC/2≥3·r/R  相似文献   

10.
△ABC中的许多不等式,如 sinA+sinB+sinC≤3 3~(1/2)/2, cosAcosBcosC≤1/8, sinA/2+sinB/2+sinC/2≤3/2, cosA/2cosB2/cosC/2≤3 3~(1/2)/8 , sin~2A+sin~2B+sin~1C≥2 3~(1/2)sinAsinBsinC等等,均可统一于以下两个不等式(因本文将给出较一般的结果,故推导过程从略): 设x,y,z∈R,A,B,C为△ABC的内角,则 (1)x~2+y~2+z~2 ≥2(xycosC+yzcosA+zxcosB), (2)x~2+y~2+z~2 ≥2 3~(1/2)/3(xysinC+yzsinA+zxsinB), 本文将上述不等式(1)与(2)推广为: 若A,B,C,x,y,z均为实数,且A+B+C=π,n∈Z,则  相似文献   

11.
有这样一个三角形不等式:在△ABC中,恒有sinA+sinB+sinC≤3/2√3,并且,当且仅当A=B=C=π/3时,取等号.  相似文献   

12.
1987年,苏化明未加证明地介绍了如下不等式链:在△ABC中,有 -cos2A-cos2B-cos2C ≤cosA+cosB+cosC ≤sinA/2+sinB/2+sinC/2 ≤3/2. (1) 杨学枝老师在文中给出了△ABC中的一个不等式: sin~2A/2+sin~2B/2+sin~2C/2≤1/4 (ctgB/2ctgC/2+ctgC/2ctgA/2+ctgA/2ctgB/2)~(1/2) (2)  相似文献   

13.
众所周知,△ABC三内角有如下两个不等式 0相似文献   

14.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

15.
文[1]用导数的方法证明了下面的结论在△ABC中,sinA sinB sinC/cosA cosB cosC<2.注意到A:B=C=π/3时,sinA sinB sinC/cosA cosB cosC的值等于3~(1/2),笔者不禁产生联想:`  相似文献   

16.
一、高中数学(人教版)第一册(下)第129页正弦定理、余弦定理一节中,介绍正弦定理时,仅仅推出了a/sinA=b/sinB=c/sinC,而不是a/sinA=b/sinB =c/sinC=2R,这对同学们全面理解正弦定理是十分不利的,也给解题带来了许多麻烦.所以许多老师都补充了这个知识点,但证明方法大多采用初中的平面几何证法.事实上,利用向量证明a/sinA=b/sinB=c/sinC=2R,过  相似文献   

17.
在很多高中数学竞赛资料上能看到这样的一个不等式:在△ABC中,A、B、C+是三角形中的三个内角,则有0〈sinA+sinB+sinC≤3/2√3,笔者经过探究后可以发现在不同形状的三角形中,这个结论可以进一步加强.  相似文献   

18.
本刊1995年第11期第35页上刘宝文对一个三角不等式作了如下推广: 在△ABC中,若A、B、C为三角形三内角,则有sinA/n sinB/n sinC/n≤3sinπ/3n①接着本刊1996年第9期第34页上安振平、  相似文献   

19.
设 x,y,z 是任意实数,在△ABC 中,则有不等式x~2 y~2 z~2≥2xycosC 2zxcosB 2yzcosA(1)其中等号当且仅当 x:sinA=y:sinB=z:sinC 时成立.不等式(1)即三角形中著名的 Wolstenholme 不等  相似文献   

20.
设P为△ABC所在平面上任意一点,△为其面积.则成立不等式PA2sinA PB2sinB PC2sinC ≥2△, (1)其中等号当且仅当P为△ABC的内心时成立.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号