共查询到20条相似文献,搜索用时 15 毫秒
1.
傅建红 《中学数学研究(江西师大)》2014,(10):40-42
我们知道,高中数学中,求二面角大小的方法通常有两类,一是用传统几何法“先作后求”;二是用空间向量法(主要为“面法向量法”)“只算不作”.前者因植根定义,易为学生理解,但对如何作出二面角的平面角(即如何将二面角的平面角构造在有效图形中)有一定的“技术难度”(尤其在某些“恶劣环境”下),学生较难掌握;而后者虽无需构造出二面角的平面角(仅凭计算即可解决),但却存在着“平面法向量方向不易判断”的“硬伤”.那么,有没有一种既能兼顾两者优点,又能回避彼此不足的方法?本文介绍有棱二面角的“另类”向量解——“棱法向量法”,并例说其应用. 相似文献
2.
3.
4.
5.
纵观历年高考试题,二面角问题在立体几何解答题中占有很大的分量;而二面角问题又因其灵活性极强、计算量较大的特点成为学生望而生畏的一类问题.本文介绍一种利用向量积求法向量解决二面角的方法,精简了分析计算的过程、省去了判断法向量方向的步骤,便于在短时间内求解二面角. 相似文献
6.
传统的求二面角的方法,对有些题目难以找到所求二面角的平面角。但用向量求二面角,可省去确定二面角的平面角的过程,现举一例供同学们参考。 相似文献
7.
8.
9.
10.
关于二面角的求解问题一直是立体几何高考的热点问题之一,也是同学们感到难以把握的一个问题,尤其是求解无棱二面角的大小问题,则更显得不知所措.本通过一道高考试题,借以说明此类问题的几种处理办法,希望能对同学们有所启发. 相似文献
11.
全日制普通高级中学教科书<数学>(第二册下B)中,在第九章"直线、平面、简单几何体"(简称"9B")引进了空间向量的知识.向量具有一套完整的运算体系,它可以把几何图形的性质转化为向量运算,变抽象的逻辑推理为具体的向量运算,实现"数"与"形"的结合.用向量知识解决某些立体几何问题,有时会显得特别简捷和具有规律性.下面就从2004年部分省市高考题中举例探折向量法在求二面角大小中的应用. 相似文献
12.
13.
华东师大陈昌平教授早就大声疾呼:坐标向量法能节省思维,是通性通法,具有应用的广泛性,思维的规范性.近几年的教学实践也证明,以向量工具解决立体几何的方法,大大降低了解题的技巧性.但是,也有一些需要深入探索的问题,例如用法向量求二面角就一直困绕着中学 相似文献
14.
二面角求法是高考热点内容,直接作出二面角平面角、射影面积法、建立空间直角坐标系用平面向量方法等都是行之有效的方法.但有时以上方法还是很不方便,比如有些几何体就不便建立空间直角坐标系,本文通过2008年几个省市高考题介绍一种方法:利用空间向量但又不建立空间直角坐标系来求二面角. 相似文献
15.
在解决近年的高考数学试题中,面积射影公式cosθ=(S谢影/S原形)在求二面角θ和多面体的截面积时,都原起着很好的作用.下面举例说明如何运用该公式来解决这两类闸题. 相似文献
16.
李生兵 《数理天地(高中版)》2012,(6):13-14
无棱二面角是指所给二面角的两个面直观上只有一个公共点,而不是一条公共直线(即二面角的棱).这类问题的求解是高考的热点也是难点,本文介绍一些常用的解法,以抛砖引玉. 相似文献
17.
陈方涛 《河北理科教学研究》2008,(3)
高中立体几何引入了空间向量,大大降低了立体几何解题的难度.随着新课程改革的进行,向量的应用将会更加广泛,这在2007年高考数学解答题中得到了充分的体现.本文试以2007年各地高考题为例,介绍法向量在求二面角中的应用. 相似文献
18.
求二面角的大小是立体几何中的一个重点问题,关键是如何作出二面角的平面角.如果二面角的棱没有给出,其难度增加许多.本文通过2001年全国高考数学试题(理)第17题(Ⅱ)介绍这类问题的几种求法。 相似文献
19.
求二面角大小的基本方法是按定义,作出二面角的平面角,求平面角的大小即可.但如果题目中没有给出二面角的两个半平面的交线,那么就难以作出二面角的平面角了.本文通过一题,给出无棱二面角的几种求解方法,供复习参考. 相似文献
20.
曹宗华 《数学学习与研究(教研版)》2011,(3)
分析近两年的高考全国卷和地方卷,发现立体几何的二面角是高考考查热点之一,而这恰恰是立体几何学习中的一大难点,解决这类问题,如果用常规方法,通常是先找 相似文献