首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>优美性质抛物线C在点D处的切线为m,和直线m平行的直线l与抛物线C相交于A、B两点,则直线l与抛物线所围封闭图形的面积和△DAB面积的比值为4∶3.为证明此性质,先证明性质1.性质1直线l:y=kx+m与抛物线y=ax2+bx+c(a≠0)相交于A(x1,y1),B(x2,y2)两点,则直线与抛物线所围成封闭图形的面积为:线段AB在x轴上投影的立方的六分之一乘以二次项系数的绝对值,即  相似文献   

2.
<正>一、试题呈现如图1,经过点A(0,-4)的抛物线y=1/2x2+bx+c与x轴相交于B(-2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=1/2x2+bx+c向上平移72个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在ABC内,求m的取值范围;  相似文献   

3.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

4.
在学习二次函数时,由于概念不清、忽视条件(包括隐含条件)、考虑不周、审题不严等方面的原因,在解题中易产生多解与漏解的现象,现举数例.例1(2004年巴中市)抛物线y=mx2-3x+3m+m2经过原点,则m=.错解:由题设可得3m+m2=0,解得m=0或m=-3.评析:当m=0时,函数为一次函数,应将m=0舍去,从而m=-3.例2(2005年东台市)已知二次函数y=(m+2)x2+6x+m2-5与y轴交于点A(0,4),且函数有最大值,则m=.错解:由题意可得m2-5=4,m=±3.评析:因函数有最大值,则m+2<0,所以m<-2,应将m=3舍去,从而m=-3.例3(2004年北流市)已知抛物线y=x2-(k-1)x-3k-2与x轴交于A(x1,0),B(x2,…  相似文献   

5.
题目 如图 1,已知抛物线y =2x2 -4x +m与x轴交于不同的两点A、B ,其顶点是C ,点D是抛物线的对称轴与x轴的交点 .( 1)求实数m的取值范围 ;( 2 )求顶点C的坐标和线段AB的长度(用含m的式子表示 ) ;( 3 )若直线y =2x +1分别交x轴、y轴于点E、F ,问△ABC与△EOF是否有可能全等 ?如有可能 ,请证明 ;如不可能 ,请说明理由 .( 2 0 0 1,上海市中考题 )错解 :( 1)因抛物线y =2x2 -4x +m与x轴交于不同的两个点A、B ,则关于x的方程 2x2 -4x +m =0有两个不相等的实数根 .所以Δ =( -4 ) 2 -4·2m =16-8m >0 .解得m <2 .( 2 )、( 3 )略 .分析 :由…  相似文献   

6.
存在性问题是指判断满足某种条件下的结论是否存在的数学问题。解决这类问题的方法有两种,一种是具体找出满足条件的数学对象;另一种是假定其存在,通过推理导致矛盾,从而判断所讨论的数学对象不存在,现举例如下,供同学们参考。例1 已知抛物线y=x2-5mx+4m2(m为常数)(1)求证:此抛物线与x轴一定有交点;(2)是否存在正数m,使已知抛物线与x轴两个交点的距离等于6m-1? 若存在,求出m的值,若不存在,说明理由。证明(1):∵△=b2-4ac=(-5m)2-4×1×4m2=25m2-16m2=9m2≥0     ∴此抛物线与x轴一定有交点。(2)假设存在正数m,使已知抛物线与x轴两个交…  相似文献   

7.
抛物线上有关存在相异两点关于某直线(或某点)对称求参数范围的问题,一般都是利用构造判别式大于0(Δ>0)或利用对称中点M(x0,y0)位于抛物线焦点所在范围内构造y20与2p x0不等式进行求解.本文给出利用均值不等式解决此类型问题的一种新方法,其特点是思路明快,解法简捷.例已知抛物线C:y2=4x与直线l:y=2x+m,若C上总存在相异两点P、Q关于直线l对称,求m的取值范围.解设P(t2,2t),Q(s2,2s)(t≠s),则kpq·kl=-1且PQ的中点M∈l,所以2s-2ts2-t2·2=-1,2t+2s2=2·t2+2s2+m.即s+t=-4,s2+t2=-m-4.所以s2+t2=-m-4,2st=20+m.因为s2+t2>2st(s≠t),所以-m…  相似文献   

8.
本文首先给出抛物线中的几组“定”结论,并举例说明它们在求解抛物线有关问题时的应用. 结论1 过抛物线y2=2px(p >0)的焦点F的直线l交抛物线于A(x1,y1)、B(x2,y2)两点,设|FA|=m,|FB|=n,O为原点,则有:(1)x1x2=p2/4;(2)y1y2=-p2;(3)kOAkOB=-4; (4)1/m+1/n=2/p.证明略.  相似文献   

9.
对于一般的抛物线方程ax2 +2hxy +by2 +2gx +2fy+c =0 ,其中L2 =ab -h2= 0 (1)通常用平移、旋转的方法确定其位置及形状 ,但过程往往较为复杂。本文另辟途径 ,给出一种较为简便的确定方法。为了使后面定理的证明不过于冗长 ,我们首先给出以下两条结论 (从抛物线的标准形式很容易证得 ) :(a)若直线与抛物线只有一个交点 ,则此直线与抛物线相切或者平行于抛物线的对称轴 ;(b)若抛物线的切线与对称轴垂直 ,则此切线一定过抛物线的顶点。方程 (1)通过配方总可变成如下形式 (具体方法见后 ) :L12 +L2 =0 (2 )其中L1=a1x +b1y +c1,L2 =a2 x +b2 …  相似文献   

10.
<正>在初中阶段,抛物线除了对称性外,还具有其他们性质[1].本文将给出抛物线内接三角形的一个几何结论,并运用结论快捷地解决有关几何问题.一、一个结论如图1(或图2),若抛物线y=ax2+bx+c(a>0)与直线y=m交于A(x_1,m),B(x_2,m)两点,点Q为抛物线上不与A,B重合的任意一点,直线AQ,BQ分别交抛物线的对称轴于点M,N,则抛物线的顶点P是线段MN的中点.证明由题设,可知  相似文献   

11.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

12.
数学问答     
48.已知椭圆C_1:x~2/4+y~2/3=1,抛物线C_2:(y-m)~2=2px(p> 0),且C_1、C_2的公共弦AB过椭圆C_1的右焦点.是否存在m、p的值,使抛物线C_2的焦点恰在直线AB上?若存在,求出符合条件的m、p的值;若不存在,请说明  相似文献   

13.
一种好的解题方法,要靠仔细观察,认真分析,创新思维,大胆探索.现结合二次函数内容,说明如下. 例1 已知抛物线y=2x2-3x+m(m为常数),它与x轴交于A、B两点,线段AB长1/2,(1)求m的值.(2)若它的顶点是P,求△PAB的面积. (2002年天津中考题) 分析:虽然m在变化,但这不影响抛物线的对称轴:直线x=3/4.既  相似文献   

14.
题目如图1,抛物线y=x2+bx+c经过点(1,-5)和(-2,4).(1)求这条抛物线的解析式.(2)设此抛物线与直线y=x相交于点A和点B(点B在点A的右侧),平行于y轴的直线x=m(0相似文献   

15.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

16.
题目函数y=-x~2+(m-2)x+3(m+1)的图象如图1,OA·OB=6. (1) 求△ABC的面积; (2) 在(1)的条件下,若双曲线y=-6m/x的图象与抛物线从左往右交于D、E、F三点,求四边形AFBD的面积; (3) 在上述条件下,x轴上方的抛物线上是否存在点P,使  相似文献   

17.
正如何提高高三第二轮复习的效率,切实做到"有效教学"是高三数学教师共同的心声,笔者就一堂解析几何公开课,结合自身多年的高三教学经历,谈谈在解析几何的复习中如何开展"有效教学".1教学设计筒录探究直线与椭圆的位置关系中的定点问题问题直线y=kx-2过定点吗?(1+m)x-(m+2)y+1=0呢?n(x+2y)+m(x-y-1)=0呢?设计意图最简单的问题让学生明确算理.例1已知抛物线E:x~2=4y,设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:  相似文献   

18.
<正>题目 已知抛物线C:y2=2px(p>0)过点M(m,2)为其焦点为F,且■(1)求抛物线C的方程;(2)设E为y轴上异于原点的任意一点,过E作不经过原点的两条直线分别与抛物线C和圆F:(x-1)2+y2=1相切于点A,B,证明:A,B,F三点共线.简析:(1)易得y2=4x. (2)设E(0,t)(t≠0),直线EA的方程与y2=4x联立,得k2x2+2(kt-2)x+t2=0. 直线EA与C相切,  相似文献   

19.
<正>试题(2019年山西中考题)如图1,抛物线y=ax~2+bx+6经过点A(-2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一动点,设点D的横坐标为m(1 相似文献   

20.
数学中一些难度较大的问题多是综合性较强的问题。如何解决这些综合性较强的问题 ,一直是教学的一个难点。本文将对一组例题进行分析 ,提供突破这一难点的一个基本思路。例 1 .已知 :抛物线 y=ax2 +bx+c(a≠ 0 )过点P(1 ,- 2 )、Q(- 1 ,2 )、H(0 ,- 3 ) .求抛物线的解析式。解 :分别将三点坐标代入 ,得a+b+c=- 2 ,a- b+c=2 ,c=- 3 , 解得a=3 ,b=- 2 ,c=- 3。∴抛物线的解析式为 y=3x2 - 2 x- 3。▲规律 :1已知三点坐标 ,可求出解析式 ;2求出解析式 ,抛物线唯一确定。例 2 .已知 :抛物线 y=ax2 +bx+c(a≠ 0 )过点P(1 ,- 2 )、Q(- 1 ,2 )。…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号