首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

2.
二次函数y=ax_2 bx c(a≠0)的图像是抛物线,我们有如下共识:点P(x_0,y_0)在抛物线上时满足y_0=ax_0~2 bx_0 c,过点P的切线有且只有一条;当点P在抛物线内时满足y_0  相似文献   

3.
正我们知道,抛物线y=ax~2+bx+c是轴对称图形,它的对称轴为x=b/(2a)。抛物线的轴对称性是二次函数的一个重要特征,即若抛物线上有两个对称点的坐标为(x_1,y_1)、(x_2,y_2)则一定有y_1=y_2,且其对称轴为x=(x_1+x_2)/2。当抛物线开口方向向上,抛物线上的点距离对称轴越远,所对应的点的纵坐  相似文献   

4.
要求已知点M(a,b)关于直线Ax+By+C=0的对称点N(x_0,y_0)的坐标,可由直线Ax+By+C=0是连接两点M(a,b)与N(x_0,y_0)的线段MN的垂直平分线而推得。由线段MN的中点((a+x_0)/2,(b+y_0)/2)在直线Ax+By+C=0上,有  相似文献   

5.
在统编高中第二册P_(150)介绍了求抛物线切线方程的初等方法。书上是这样说的:“设抛物线方程为y~2=2px,p(x_0,y_0)是抛物线上一点,我们来确定斜率k,使过点P的直线PQy—y_0=k(x—x_0)成为抛物线在P点的切线。(注意符号是笔者添的,  相似文献   

6.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

7.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

8.
运用题组进行教学,可以把有关知识综合串联起来,有助于开拓学生的思路,培养综合运用的能力。本文介绍“圆锥曲线”中的两个题组。 (一)抛物线的焦点弦有着广泛的应用,围绕着焦点弦、切线、准线等可以组成很多题目。为了帮助学生理清头绪,我们首先复习统编教材上证过的两个题:(1)已知经过抛物线y~2=2px上两点P_1(x_1,y_1)和P_2(x_2,y_2)的两条切线相交于点M(x_0,y_0)。求证x_0=(y_1y_2)/(2p),y_0=(y_1 y_2)/2。(解几课本第120页第6题)(2)过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2。求证y_1y_2=-p~2。(解几课本第111页第8题)在学生掌握了这两题的证法和结论  相似文献   

9.
《解析几何》课本在2.13节中介绍了求抛物线y~2=2px在点P(x_0,y_0)(P点在抛物线上,x_0≠0)处的切线方程的方法:直线与抛物线相切是方程组应有两个相同的实数解,根据这个条件,可以确定k的值。  相似文献   

10.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

11.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

12.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

13.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

14.
<正>抛物线除了对称性等熟知的性质外,还有一些未知的性质.本文探求以抛物线上一定点为直角顶点的内接直角三角形的一个性质,并运用该性质快捷地解决有关问题.一、性质及拓展抛物线y=ax2上有一定点A(x_0,y_0),B(x_1,y_1),C(x_2,y_2)是二次函数图象上的两个不同于点A的动点.若AB⊥AC,  相似文献   

15.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

16.
二元二次多项式 F(x,y)=Ax~2 2Bxy cy~2十2Dx 2Ey F 式中,A、B、C、D、E、F∈R 用矩阵表示,即为 定义1 称为二元二次多项式的配极形式。 配极形式F~*(X_0,y_0;x,y)有如下一些性质: (1)对称性 F~*(x_0,y_0;x,y)=F~*(x,y;x_0,y_0) (2)还原性 F~*(x_0,y_0;x_0,y_0)=F(x_0,y_0) 利用矩阵的运算性质,不难证明性质(1)和性质(2)。 (3)设a、b∈R,且a b=1,则  相似文献   

17.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

18.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

19.
数学概念通常是以定义的形式表述的,因此利用定义解题能沟通数学问题内在的本质属性,常常能达到化繁为简、化难为易的效果。本文分类举例说明定义在解题中的运用。 1.利用圆锥曲线的定义 例1 在抛物线x~2=Ay上有两点A(x_1,y_1)和B(x_2,y_2),满足|AB|=y_1 y_2 2。求证:点A,B和这抛物线的焦点三点共线,(1989年广东理工类第二卷第四题 证明:如图,抛物线的焦点为F(0.1)。准线方程为y=-1.点A、B到准线的距离分别为d_1=y_1 1,d_2=y_2 1。  相似文献   

20.
定理:设抛物线方程y~2=2px,若过抛物线焦点F(p/2,0),且倾斜角为α(α≠0)的直线,交抛物线于M(x_1,y_1)、N(x_2,y_2),则M、N点的坐标存在如下关系:x_1·x_2=p~2/4 ①y_1·y_2=-P~2 ②证明:过焦点F(p/2,0)且倾斜角为α的直线方程为:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号