首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

2.
每期一题     
己知抛物线y~2=2px的一条焦点弦被焦点分成长为m,n的两部分求证:1/m 1/n=2/p 如图设A(x_1,y_1),B(x_2,y_2),m=|FA|,n=|FB|,F(1/2p,0),准线方程x 1/2p=0。  相似文献   

3.
<正>1真题再现设抛物线C:y2=2px(p>于M,0)的焦点为F,点D(p,0),过F的直线交C N两点.当直线MD垂直于x轴时,MF=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.(2022年高考数学全国甲卷第20题)  相似文献   

4.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

5.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

6.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

7.
本文结合2005年高考题中的直线内容,揭示此类问题考查及求解的一般规律,供参考.一、直线的倾斜角和斜率主要考查直线倾斜角α的定义及范围(0°≤α<180°),直线斜率κ的定义及存在条件(当α=90°时,κ不存在),直线斜率κ的三种常用求法:(1)已知直线倾斜角为α(α≠90°),则κ=tanα;(2)若直线过点P_1(x_1,y_1),P_2(x_2,y_2),且  相似文献   

8.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

9.
<正>1考题呈现题1(2018年高考全国数学卷Ι理19题)设椭圆C:x2/2+y2/2+y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线  相似文献   

10.
<正>直线的参数方程是由直线经过的定点和其倾斜角确定的.经过定点P_0(x_0,y_0),倾斜角为α的直线的参数方程为{x=x_0+tcosα,y=y_0+tsinα(为参数).我们不妨把直线参数方程的这种形式称之为直线参数方程的标准式.一、直线l参数方程中参数t的深层理解设直线l过定点P(x_0,y_0),P,P_1,P_2是直线l上的点,在参数方程标准式中相应参数值分別为t、t_1、t_2,则(1)P与P_0的距离为|PP_0|=|t|.  相似文献   

11.
<正>我们知道,经过点M_0(x_0,y_0),倾斜角为α(α≠π/2)的直线l的参数方程为{x=x_0+tcosα,y=y_0+tsinα(t为参数),其中参数t的几何意义是:|t|表示直线上的动点M(x,y)到定点M_0(x_0,y_0)的距离,若t>0,则动点M在定点M_0的上方;若t<0,则动点M在定点M_0的下方;若t=0,则动点M与  相似文献   

12.
运用题组进行教学,可以把有关知识综合串联起来,有助于开拓学生的思路,培养综合运用的能力。本文介绍“圆锥曲线”中的两个题组。 (一)抛物线的焦点弦有着广泛的应用,围绕着焦点弦、切线、准线等可以组成很多题目。为了帮助学生理清头绪,我们首先复习统编教材上证过的两个题:(1)已知经过抛物线y~2=2px上两点P_1(x_1,y_1)和P_2(x_2,y_2)的两条切线相交于点M(x_0,y_0)。求证x_0=(y_1y_2)/(2p),y_0=(y_1 y_2)/2。(解几课本第120页第6题)(2)过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2。求证y_1y_2=-p~2。(解几课本第111页第8题)在学生掌握了这两题的证法和结论  相似文献   

13.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

14.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

15.
<正>我们知道,在直角坐标系中,过点P0(x0,y0)且倾斜角为α的直线l的参数方程为{x=x_0+tcosα,y=y_0+tsinα(t为参数),其中,|t|表示直线l上的任意点P(x,y)到定点P_0(x_0,y_0)的距离.在极坐标系中,过极点O且倾斜角为α的直线l的极坐标方程为θ=α(ρ∈R),其中,ρ表示直线l上的任意点P(ρ,θ)到极点O的距离.作为高考选考内容之一的参数方程与极  相似文献   

16.
性质1 如图1,抛物线E:y2=2px(p>0)的焦点为F,过焦点F作两条互相垂直的弦AB、CD,设弦AB、CD的中点分别为M、N,则线段MN恒过定点T(3p/2,0),且以AB、CD为直径的两圆公共弦中点的轨迹是以OT为直径的圆.  相似文献   

17.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

18.
六年制重点中学高中数学课本《解析几何》P.111的第8题:“过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1,y_2求证:y_1y_2=-p~2”。若设两个交点的横坐标为x_1,x_2,由y_1y_2=-p~2,易知x_1x_2=p~2/4,这就是说“抛物线焦点弦(经过焦点,并且两个端点在抛物线上的线段)的两个端点的横坐标之积是常数,纵坐标之积也是常数”。此结论很重要,它反映了抛物线焦点弦的一个重要性质。解题时,为了减少引进参数,若设抛物线y~2=  相似文献   

19.
设直线MN过抛物线的焦点F,与抛物线相交于M、N两点,则MN称为焦点弦.不妨设抛物线Y2=2px(p>0),MN的斜率为k,倾斜角为θ,M(x1,y1),N(x2,y2),MA、NB分别垂直于准线于A、B点.  相似文献   

20.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号