首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设A、B、C表示ΔA BC的三个内角,∑表示循环和,我们有定理在△ABC中,有cos sin cos222∑B C≤∑A,(1)cos sin cos222∑A C≤∑A,(1')sin sin1sin22∑A B≤∑A,(2)sin sin1sin22∑A C≤∑A.(2')当且仅当△ABC为正三角形时等号成立.证明不失一般性,无妨设A≤B≤C,由A,B,C为ΔA BC的三个内角,则,,222A B C∈(0,)2π.由于在区间(0,π/2)内的正弦函数和余弦函数均具有单调性,则0sin sin sin1222相似文献   

2.
本刊1995年第11期第35页上刘宝文对一个三角不等式作了如下推广: 在△ABC中,若A、B、C为三角形三内角,则有sinA/n sinB/n sinC/n≤3sinπ/3n①接着本刊1996年第9期第34页上安振平、  相似文献   

3.
<正> 在△ABC中有这样一个不等式sin A+sin B+sin C≤(3(3~(1/3))) ①对于这个不等式有各种各样的证明方法,笔者在此提供一种证法.这种证法有利于把这个不等式推广到更一般的情形.分析△ABC中,A+B+C=π,又sinπ/3=(3~(1/3))/2,故上述不等  相似文献   

4.
在△ABC中,有常见不等式 cosAcosBcosC≤1/8 ①, sin(A/2)sin(B/2)sin(C/2)≤1/8 ②, 本文将指出①②两式左端的大小关系,有  相似文献   

5.
定理 设△ ABC的内心为 I,R,R1 ,R2 ,R3 分别是△ABC,△IBC,△ICA,△IAB的外接圆半径 ,则有R1 +R2 +R3 ≤ 3R,(1)R1 · R2 · R3 ≤ R3 . (2 )当且仅当△ ABC为正三角形时 ,(1)、(2 )取图 1等号 .证明 如图1,设 BC=a,CA=b,AB =c,因 I是△ABC的内心 ,则有sin∠ BIC=sin(180°- B+C2 ) =cos A2 .(3)由正弦定理及 (3)式可得R1 =a2 sin∠ BIC=2 Rsin A2 cos A2=2 Rsin A2 .同理可得R2 =2 Rsin B2 ,R3 =2 Rsin C2 .结合熟知的三角不等式sin A2 +sin B2 +sin C2 ≤ 32 及sin A2 sin B2 sin C2 ≤ 18,可得R1 +R2 +R…  相似文献   

6.
在△ABC中,有一个熟知的不等式sin A/2sinB/2sinC/2≤1/8.本文借助琴生不等式给出它的几个推广. 琴生不等式 设f″(x)<0,则 1/nn∑i=1f(xi)≤f(1/nn∑i=1xi) 即 n∑i=1f(xi)≤nf(1/nn∑i=1xi) 引理 若f(x) =sinx,x∈(0,π),则 f"(x)<0. 定理1 在△ABC中, sinA/nsinB/nsinC/n≤sin3π/3n(n∈N*).  相似文献   

7.
文[1]中给出了二倍角三角形的一个性质及其应用,作为该文的补充,今给出n倍角三角形的一个性质及其相应的一些推论。下面用A、B、C表示△ABC的三内角,以a、b、c分别表示它们的对边 定理 在△ABC中,若A=nB (n∈N),则 a~2=b~2 bc·sin(n-1)B/sinB 证明 在△ABC中,因A=nB,故C=180°-(n 1)B ∴sin~2B sinC·sin(n-1)B=sin~2B sin(n 1)B·sin(n-1)B =1/2(1-cos2B)-1/2(cos2nB-cos2B)  相似文献   

8.
我们知道,在△ABC中,已有下列不等式: sinAsinBsinc≤(3/8)3(1/2)=sin~3(π/3) ① Sin(A/2)sin(B/2)sin(C/2)≤1/8=sin~3(π/6) ② 这类不等式可以推广为: 命题 在△ABC中, Sin(A/k)sin(B/k)sin(C/k)≤sin~3(π/3k)(k∈N) ③  相似文献   

9.
一个新发现的三角不等式   总被引:2,自引:2,他引:0  
苏张延卫、陕西苟春鹏两位老师分别证明 3以下三角不等式 :在△ ABC中 ,有sin A 2 sin B2 3sin C3≤ 3,(1)cos A 2 cos B2 3cos C3≤ 3 3 . (2 )受文 [1]的启发 ,本文作者证得一个类似的新结果 :cot A 2 cot B2 3cot C3≥ 6 3. (3)其实 ,我们有下述定理 在△ABC中 ,对 k≥ 1有cot Ak 2 cot B2 k 3cot C3k≥ 6 cotπ6 k,(4 )等号成立当且仅当 A=π6 ,B=π3.证明 若 x>0 ,y>,且 x y<π,则cotx coty=sin(x y)sinxsiny=2 sin(x y)cos(x- y) - cos(x y)≥ 2 sin(x y)1- cos(x y) =2 cotx y2 .∴cot AR 2 cot B2 …  相似文献   

10.
我们知道,在△ABC中,若A,B,C为三角形的三内角,则有: sinA sinB sinC≤3(3~(1/2))/2=3sinπ/3。 本短文将利用平几知识,给出如下推广: 定理 在△ABC中,若A,B,C为三角形的内角,则有:  相似文献   

11.
文[1]给出了如下不等式:在△ABC中,有cosA.cos~2B/2cos~3C/3≤27/64①.经类比探究,笔者得到了一个上述不等式的"姊妹不等式":在△ABC中,有sinAsin~2B/2sin~3C/3≤1/64②,当A=B/2=C/3时等号成立.证明∵sinAsinB/2=-1/2[cos(A+b/2)-cos(A-B/2]  相似文献   

12.
有些三角不等式问题蕴含着丰富的几何直观性。此时,可考虑构造直观的几何图形来解决此类问题。例1在锐角三角形中,求证 求证:sin2θ·tgθ/2≤1/2 sinA sinB sinC>cosA cosB cosC 证明:(1)当π/2≤θ<π,θ=0时, 证明:△ABC是锐角三角形,如图1,  相似文献   

13.
在△ABC中,设△ABC的面积为S,角A,B,C所对的边分别为a,b,c,则有下列不等式链:a^2+b^2+c^2≥bc+ca+ab≥4√3S.①类比此不等式,文[1]得到一个类似不等式:a^2 sinA/2+b^2 sinB/2+c^2 sin C/2≥bcsin A/2+ca sin B/2+ab sin C/2≥2√3S.  相似文献   

14.
以A、B、C,a、b、c,s,R分别表示△ABC的内角,边长,半周长,外接圆的半径,∑,∏分别表示循环和与循环积.我们有命题在△ABC中,有11∑sin A≥∑cos(A/2).(1)当且仅当△ABC为正三角形时等号成立.证明由∑sin1A=∑s∏ins iBn sAinC.12sin2cos2sinA∑A=∑A2sin2sin sinsinA B C=∑∏A  相似文献   

15.
命题 在△ABC中,m≥l,m∈R,则 ∏sin(A/m)≤(sin(π/3m))其中积号∏关于A、B、C轮换,下同。 设,n∈N.先证明数列{u_n}单调递增.  相似文献   

16.
用图象法证明一些不等式,方法是相当简洁的,中学生也易掌握。现举例介绍如下。例1.若α_1、α_2、α_3为△ABC的三个内角。则sinα_1 sinα_2 sinα_3≤3(3~(1/2))/2 证明:如图1,显然点A_i(α_i,sinα_i)在y=sinx的图象上,x∈(0,π),i=1,2,3。设G为△A_1A_2A_3的重心,则G是((α_1 α_2 α_3)/3,(sinα_1 sinα_2 sinα_3)/3)。过G作MN⊥x轴。因△A_1A_2A_3在图象下方,G当然也在下方,所以NG≤NM 即(sinα_1 sinα_2 sinα_3)/(?)  相似文献   

17.
题目:△ABC中,如果a+b≥2c,证明C≤60°.(2011年北约自主招生数学试卷第4题) 证明:由余弦定理知cos C=a2+b2-c2/2ab≥a2+b2-(a+b/2)2/2ab=3/4(a2+b2)-ab/2/2ab≥1/2.所以,C≤60°.故得证. 笔者经过研究,发现本题结论可以推广为: 定理1:△ABC中,如果an+cn≥2bn(n∈Z),则B≤60°,其中a,b,c表示△ABC中角A,B,C的对应边.  相似文献   

18.
结论:在△ABC中,A、B、C为三角形内角,则sin A>sin B(?)A>B.证明:(必要性)sin A>sin B(?)sin A-sin B=2cos(A B)/2sin(A-B)/2>0.由条件知0<(A B)/2<π/2,-π/2<(A-B)/2<π/2,所以cos(A B)/2>0,则必有sin(A-B)/2>0,可得0<(A-B)/2<π/2,即A>B.(充分性)若A为锐角或直角,由已知A>B,则0<B<A≤π/2,于是  相似文献   

19.
题目:已知a、b、c是锐角三角形ABC的三个内角A、B、C所对的三边,tg1/2A=tg~3 1/2 C,sinBcosC=sin(C-B),并且a、b、c、成等比数列,试证明△ABC是正三角形。有一本书给出的解答提示如下:“先由已知条件和A+B+C=π导出B=1/3π,再由余弦定理证明 a=c,则△ABC是正三角形”。其实,这道题是不妥的。为了便于分析,笔者根据以上提示猜测其证明过程为: 由已知 sinB·cosC=sin(C-B) 得 sinB·cosC=sinCcosB-cosCsinB化简得 2sniB·cosC=sinC·cosB ①  相似文献   

20.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号