首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

2.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

3.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

4.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

5.
将平面上一点P(x_1,y_1),移到新的位置P'(x_1,y_1'),使y_1'=ky_1。这种变换叫做点P向X轴均匀压缩。常数k≠0叫做压缩系数。本文下面取0b>0),可得出椭圆x~2/a~2+y~2/b~2=1。证明如下。设P(x,y)是圆上任意一点,经压缩变换后的对应点是P'(x',y'),则有x'=x,y'=ky=b/a y,由此得y=a/b y',代入x~2+y~2=a~2,得x'~2+a~2/b~2 y'~2=a~2,于是有x'~2/a~2+y'~2/b~2=1,  相似文献   

6.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

7.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

8.
引言本文只论及一元微分的应用,一共写了十六个方面.本期登载的是用导数研究函数的部分内容. 一函数的增减性定义设函数y=f(x)在区间(a,b)内有定义,x_1、x_2是区间(a,b)内的任意两点,当x_1f(x_2),那么y=f(x)就称为在区间(a,b)内的减函数.  相似文献   

9.
导数的应用非常广泛,导数与函数的单调性的综合运用问题是高考命题的热点。有些貌似与导数无关的问题,若巧用导数去解决,常有"山重水复疑无路,柳暗花明又一村"的效果。下面举例说明。一、判断方程的根的个数由函数的图像性质特征可知,若f(x)在区间[a,b]上单调,且f(a)f(b)<0,则f(x)=0在[a,b]上有唯一的实根,若f(a)f(b)与零的大小无法确定,则f(x)=0在区间[a,b]上至多有一个实根。例1若-1相似文献   

10.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

11.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

12.
刘瑞美 《考试》2010,(Z1):115-118
一、与函数、导数和方程的交汇例1已知函数f(x)=(1/3)x~3+(1/2)ax~2+bx,a,b∈R,f′(x)是函数f(x)的导数。若-1≤a≤1,-1≤b≤1,求函数f′(x)在R上有零点的概率。分析:函数f′(x)在R上有零点即要求x~2+ax+b=0有实数根,只需根据一元二次方程有实数根的条件得出相应的不等关系,画出  相似文献   

13.
数学科     
例一:已知幂函数图像过点M(2,1/4),则f(0.5)=( )(A)2~(1/2)/2 ;(B)1/4;(C)4;(D)2~(1/2)[评析]这道题考查了函数的基本概念,初等函数的解析表达式,当x=x_0时求函数值y_0=f(x_0),及待定系数法等重要内容.解答本题首先要清楚幂函数的解析式是y=x~n,其次对函数图像的概念:“设函数y=f(x)定义在数集A上,则坐标平面上的点集{(x,y)|x∈A,y=f(x)}称为函数y=f(x)的图像”有明确的认识.一般的函数图像过点M(x_0,y_0).可以理解为x=x_0时y=y_0由已知幂函数  相似文献   

14.
夏国华 《考试》2003,(3):43-44
2002年上海春季高考数学试卷中有这样一道题:第(22)题:若存在 x_0∈R,使 f(x_0)=x_0成立,则称 x_0为f(x)的不动点。已知 f(x)=ax~2+(b+1)x+b=1(a≠0)(1)a=1,b=-2,求 f(x)的不动点;(2)若对实数 b 函数 f(x)恒有两个相异的不同点,求 a 的范围;  相似文献   

15.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

16.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

17.
逆应用数学知识(定理、定义、公式、法则等)解某些题,能使解法简捷而巧妙,但也有其难处。下面先举例说明其巧,再道其难。巧一、概念的逆应用例1.若a/3+b/2=6/k(a、b、k均为常数,则直线ax+by=1必过一定点。 [思考] 一般用直线束方程解,由条件求得b=12/k-2a/3代入ax+by=1,化成((12/k)y-1)+a(x-(2/3)y)=0,它是过的交点的直线束方程,再确定其交点为已知即可,但较繁,若逆应用“曲线与方程”的概念点(x_0,y_0)在曲线f(x,y)=0上(?)f(x_0,y_0)=0证之则较简捷。  相似文献   

18.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

19.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

20.
导数作为一种工具,在解决数学问题时应用极为方便,尤其是利用导数可以求函数的单调性、极值、最值以及曲线的切线.在学习的过程中,概念不清导致导数应用错误的情形时常发生.本文拟对导数应用中常见的误区进行简单剖析.一、对极值的条件理解不清例1函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求a,b.误解由题意知f'(x)=3x2+2ax+b,且f'(1)=0,f(1)=10,即2a+b+3=0,a2+a+b+1=10.解得ab==4-,11,或ab==-33,.剖析本题误把f(x0)为极值的必要条件当成充分条件.要保证f(x0)为极值,还需验证f'(x)在x0两侧附近符号是否相异.当a=4,b=-11时,f'(x)=(3x+11)(x-1)在…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号